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FluSI: A NOVEL PARALLEL SIMULATION TOOL FOR FLAPPING
INSECT FLIGHT USING A FOURIER METHOD WITH VOLUME
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Abstract. We introduce FluSI, a fully parallel open source software package for pseudospectral
simulations of three-dimensional flapping flight in viscous flows. It is freely available for noncommer-
cial use from GitHub (https://github.com/pseudospectators/FLUSI). The computational framework
runs on high performance computers with distributed memory architectures. The discretization of
the three-dimensional incompressible Navier–Stokes equations is based on a Fourier pseudospectral
method with adaptive time stepping. The complex time varying geometry of insects with rigid
flapping wings is handled using the volume penalization method. The modules characterizing the
insect geometry, flight mechanics, and wing kinematics are described. Validation tests for different
benchmarks illustrate the efficiency and precision of the approach. Finally, computations for a model
insect in the turbulent regime demonstrate the versatility of the software.
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1. Introduction. Flapping flight is an active interdisciplinary research field with
many open questions, and numerical simulations have become an important instru-
ment for tackling them. Here, we present the computational solution environment
FluSI, which is, to the best of our knowledge, the first open source code in this field.

In the literature different numerical strategies have been proposed for simulating
flapping flight, e.g., the use of several overlapping grids [19], which are adapted to the
geometry, or the use of moving grids with the arbitrary Lagrangian–Eulerian method
[29]. Those methods involve significant computational and implementation overhead,
the reduction of which has motivated the development of methods that allow for
geometry-independent discretization, such as immersed boundary methods.

In this work, we employ the volume penalization method to take the no-slip
boundary condition into account. The idea of modeling solid obstacles as porous
media with a small permeability was proposed in [2]. The forcing term acts on the
entire volume of the solid and not only on its surface, as it is the case in the immersed
boundary methods, and corresponds to the Darcy drag. The distinctive feature of the
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S4 ENGELS, KOLOMENSKIY, SCHNEIDER, AND SESTERHENN

method is the existence of rigorous convergence proofs [1, 6] showing that the solution
of the penalized equations does indeed converge to the solution of the Navier–Stokes
equations with no-slip boundary conditions. This approach has been extended to
model not only Dirichlet conditions applied at the surface of moving, rigid, and flexi-
ble obstacles [17, 9], but also to homogeneous Neumann conditions, which is relevant
for studying, e.g., turbulent mixing of a passive scalar [15]. This technique can poten-
tially be useful for numerical simulation of odor-modulated navigation, as the odor
can be treated as an essentially passive scalar. An interesting recent development
was proposed in [13] in the context of finite-difference discretizations. Their idea is to
modify the fractional step projection scheme such that the Neumann boundary condi-
tion, as introduced in [15], appears in the pressure Poisson equation. Another variant,
specifically adapted to impulsively started flow, is the iterative penalization method
proposed in [12]. For reviews on immersed boundary and penalization techniques, we
refer the reader to [22, 27, 32].

The remainder of this article is organized as follows. First we discuss, in sec-
tion 2, the numerical method of FluSI’s fluid module, which is based on a spectral
discretization of the three-dimensional penalized Navier–Stokes equations. Section
3 describes the module that creates the insect geometry, as well as the governing
equations for free flight simulations, and we focus on the parallel implementation in
section 4. Thereafter we present a validation of our software solution environment in
section 5 for different test cases established in the literature, and give an outlook for
applications to flapping flight in the turbulent regime in section 6. Conclusions are
drawn in section 7.

2. Numerical method.

2.1. Model equations. For the numerical simulation of many flapping fliers,
like insects, the fluid through which they move can typically be approximated as in-
compressible. It is thus governed by the incompressible Navier–Stokes equations with
the no-slip boundary condition on the fluid-solid interface. The numerical solution of
this problem poses two major challenges. First, the pressure is a Lagrangian multiplier
that ensures the divergence-free condition. Traditional numerical schemes employ a
fractional step or projection method [16], requiring the solution of a Poisson prob-
lem for the pressure. Second, the no-slip boundary condition must be satisfied on a
possibly complicated and moving fluid-solid interface, for which boundary-fitted grids
are classical approaches [35]. Since the generation of these grids may be challenging,
alternatives have been developed. The principal idea is to extend the computational
domain to the interior of obstacles. The boundary is then taken into account by
adding supplementary terms to the Navier–Stokes equation. The technique chosen
here is the volume penalization method, which is physically motivated by replacing
the solid obstacle by a porous medium with small permeability Cη. The penalized
version of the Navier–Stokes equations then reads

∂tu+ ω × u = −∇Π+ ν∇2u− χ

Cη
(u− us)︸ ︷︷ ︸

penalization

− 1

Csp
∇× (χspω)

∇2︸ ︷︷ ︸
sponge

,(2.1)

∇ · u = 0,(2.2)

u (x, t = 0) = u0 (x), x ∈ Ω, t > 0,(2.3)D
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A NOVEL TOOL FOR SIMULATING FLAPPING INSECT FLIGHT S5

where u is the fluid velocity, ω = ∇ × u is the vorticity, and ν is the kinematic
viscosity. The sponge term is explained in section 2.3. Equations (2.1)–(2.3) are
written in dimensionless form, and the fluid density �f is normalized to unity. The
nonlinear term in (2.1) is written in the rotational form; hence one is left with the
gradient of the total pressure Π = p + 1

2u · u instead of the static pressure p [28].
This formulation is chosen because of its favorable properties when discretized with
spectral methods, namely conservation of momentum and energy [28, p. 210]. At
the exterior of the computational domain, which is supposed to be sufficiently large,
periodic boundary conditions can be assumed. The mask function χ is defined as

(2.4) χ (x, t) =

{
0 if x ∈ Ωf ,

1 if x ∈ Ωs,

where Ωf is the fluid and Ωs the solid domain. In anticipation of the application to
moving boundaries, we note that we will replace the discontinuous χ-function by a
smoothed one, with a thin smoothing layer centered around the interface. The mask
function encodes all geometric information about the problem, and (2.1)–(2.3) do not
include no-slip boundary conditions.

Note that in the fluid domain Ωf one recovers the original equation as the pe-
nalization term χ

Cη
(u− us) vanishes. The convergence proof in [6, 1] shows that the

solution of the penalized Navier–Stokes equations (2.1)–(2.3) indeed tends for Cη → 0
towards the exact solution of Navier–Stokes equation, imposing no-slip boundary
conditions, with a convergence rate of O (√Cη

)
in the L2-norm. The parameter Cη

should thus be chosen small enough, which is also intuitively clear by the physical in-
terpretation of Cη as permeability. However, the choice of Cη is subject to constraints,
as the penalized equations are discretized and solved numerically. The modeling error
of order O (√Cη

)
should be of the same order as the discretization error [24]. It is

first noted that in (2.1), Cη has the dimension of time. It is instructive to put the
nonlinear, viscous, and pressure terms aside for a moment. One is then left with
∂tu = −u/Cη inside the solid, with the obvious solution u = u0 exp (−t/Cη). Thus,
Cη can be directly identified as the relaxation time. Interfering with the time step Δt,
usually implying Δt = O (Cη), this simple fact has important consequences for the
numerical solution. It indicates that a good choice for Cη is not only “small enough,”
but also “as large as possible.” Further insight into the properties of the penaliza-
tion method can be obtained considering the penalization boundary layer of width
δη =
√
νCη, which forms inside the obstacle Ωs, as shown in [6]. When increasing the

resolution, the number of points per boundary layer thickness, K = δη/Δx, should be

kept constant, which implies the relation Cη ∝ (Δx)
2
, consistent with [24], where the

penalized Laplace and Stokes operators were analyzed analytically and numerically.
With the scaling for Cη, one still has to choose the constant K. In fact, for any
value of K, the method will converge with the same convergence rate, but the error
offset can be tuned. For the two-dimensional Couette flow, in [9] we reported the
optimal value of K = 0.128. In a range of numerical validation tests, including the
ones presented here, we find K = 0.1–0.4 as a good choice which we recommend as a
guideline for practical applications.

To satisfy the incompressibility constraint (2.2), a Poisson equation for the pres-
sure is derived by taking the divergence of (2.1), yielding

(2.5) ∇2Π = ∇ ·
(
−ω × u− χ

Cη
(u− us)

)
.
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S6 ENGELS, KOLOMENSKIY, SCHNEIDER, AND SESTERHENN

By construction of the method, (2.5) can be solved with periodic boundary conditions.
The aerodynamic force F and the torque moment m, both important quantities

in the present applications, can be computed from

F =

∮
∂Ωs

σ · ndγ =
1

Cη

∫
Ω

χ (u− us) dV +
d

dt

∫
Ωs

usdV,(2.6)

m =

∮
∂Ωs

r × (σ · n) dγ =
1

Cη

∫
Ω

r × χ (u− us) dV +
d

dt

∫
Ωs

r × usdV,(2.7)

where the last terms in the right-hand sides are denoted “unsteady corrections” [36].

2.2. Penalization method for moving boundary problems. The volume
penalization method as discussed so far assumes a discontinuous mask function in the
form of (2.4). When applying the method to a nongrid aligned body, for example a
circular cylinder, the mask function geometrically approximates the boundary to first
order in Δx. Results for a stationary cylinder using the discontinuous mask function
are acceptable [31, 33], but spurious oscillations in the case of moving bodies are
reported [17]. The reason for this is that the discontinuous mask can be translated
only by integer multiples of the grid spacing, and this jerky motion causes large
oscillations in the aerodynamic forces. Kolomenskiy and Schneider [17] proposed an
algorithm to shift the mask function in Fourier space instead of physical space. In the
present work, we employ a different approach, because displacing the mask in Fourier
space involves (additional) Fourier transforms, which are computationally expensive,
especially if more than one rigid body is considered, as it is the case here. The idea on
hand is to directly assume the mask function to be smoothed over a thin smoothing
layer [8, 9]. To this end, we introduce the signed distance function δ(x, t) [25], and
the mask function can then be computed from the signed distance, using

(2.8) χ (δ) =

⎧⎨⎩
1, δ ≤ −h,

1
2

(
1 + cos

(
π δ+h

2h

))
, −h < δ < +h,

0, δ > +h,

where the semithickness of the smoothing layer, h, is used. This is typically defined
relative to the grid size, h = CsmthΔx; thus (2.8) converges to a Heaviside step
function as Δx → 0. Nonetheless, it can be translated by less than one grid point,
and then be resampled on the Eulerian fluid grid.

2.3. Wake removal techniques. The penalized Navier–Stokes equations (2.1)–
(2.3) do not, by principle, include no-slip boundary conditions, and furthermore we
discretize them in a periodic domain Ω. In such a periodic setting, the wake re-enters
the domain, which is an undesired artifact. To overcome this issue, a supplementary
“sponge” penalization term can be added to the vorticity-velocity formulation of the
Navier–Stokes equations, in order to gradually damp the vorticity [8, 9]. The sponge
penalization parameter Csp is usually set to a larger value than Cη, typically Csp =
10−1. The larger value and its longer relaxation time ensure that if a traveling vortex
pair enters the sponge region, the leading one is not dissipated too fast, because it
otherwise could leave the partner orphaned in the domain. Applying the Biot–Savart

operator to the vorticity-velocity formulation, we formally find − 1
Csp
∇× (χspω)

∇2 . By

construction the sponge term is divergence-free, which is important since otherwise
it would contribute to the pressure, which in turn would be modified even in regions
far away from the sponge due to its nonlocality. Moreover, this term leaves the mean
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A NOVEL TOOL FOR SIMULATING FLAPPING INSECT FLIGHT S7

flow, i.e., the zeroth Fourier mode, unchanged. This technique is well adapted to
spectral discretizations, since computing the sponge term requires the solution of three
Poisson problems, which becomes a simple division in Fourier space. A discussion on
the influence of the vorticity sponge can be found in section 6 (see Figure 6.3).

Dirichlet conditions on the velocity can be imposed directly with the volume pe-
nalization, which applies, for example, to channel walls. For simulations in a uniform,
unbounded free-stream, we use both techniques; in a small layer at the domain bor-
ders, the Dirichlet condition u = u∞ is imposed with the same precision as the actual
obstacle, and a preceding, thicker sponge layer ensures that the upstream influence
is minimized [9]. The sponge technique is similar to the “fringe regions” proposed in
[30]. However, in [30] only a velocity sponge is used, which corresponds to the penal-
ization term, i.e., −χsp

(
u− usp

)
/Csp. The vorticity sponge idea has the advantage

of not requiring a “desired” velocity field usp, which has to be set a priori. It also
does not contribute to the pressure, which helps reduce the region of influence.

2.4. Discretization. The model equations (2.1) and (2.5) can be discretized
with any numerical scheme; in particular, a Fourier pseudospectral discretization can
be used [31, 17, 9]. The general idea is to represent field variables as truncated Fourier
series, and thus in three dimensions we have for any quantity ϕ (velocity, pressure,
vorticity) the discrete complex Fourier coefficients ϕ̂. They can be computed efficiently
with the fast Fourier transform (FFT) [7]. The gradient of a scalar q can be obtained

by multiplying the Fourier coefficients q̂ with the wavevector k = (kx, ky, kz)
T

and

the complex unit ∇̂q = ιkq̂. The Laplace operator becomes a simple multiplication
by −|k|2. When using, e.g., finite differences, the dominant part of the computational
effort is spent on solving the Poisson equation in every time step [14]. This is a strong
motivation for employing a Fourier discretization, as inverting a diagonal operator
becomes a simple division. Inserting the truncated Fourier series into the model
equations and requiring that the residual vanish with respect to all test functions
(which are identical with the trial functions exp (ιk · x)) yields a Galerkin projection
and results in an evolution equation for the Fourier coefficients of the velocity. The
nonlinear and penalization terms contain products, which become convolutions in
Fourier space. To speed up computation, the products are calculated in physical
space. This last introduces aliasing errors which are virtually eliminated by the 2/3
rule [5], meaning that only 2/3 of the Fourier coefficients are retained. Such a mixture
of spectral and physical computations is generally labeled “pseudospectral” and is,
when dealiased, equivalent to a Fourier–Galerkin scheme. The code can be run with
and without dealiasing, but our choice is to conservatively always turn dealiasing on.
More details on the effect of dealiasing are discussed in [24, p. 318].

The spatially discretized equations can then be advanced in time in Fourier space.
The code provides a classical fourth order Runge–Kutta scheme with explicit treat-
ment of the diffusion term, and a second order Adams–Bashforth scheme with inte-
grating factor [31].

Besides the fast solution of Poisson problems, the spectral method has the ad-
vantage of not adding numerical diffusion or dispersion to the penalized equation, in
contrast to the case when discretized with finite differences. Furthermore, most of the
computational effort is concentrated in the Fourier transforms, which is advantageous
from a computational point of view. However, the discretization requires the use of
an equidistant grid, which implies using a large number of grid points to resolve the
thin boundary layers.

Note that we do not explicitly apply a Neumann-type boundary condition for
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S8 ENGELS, KOLOMENSKIY, SCHNEIDER, AND SESTERHENN

the pressure in our method. We use only periodic boundary conditions in the com-
putational domain, which are natural for Fourier methods. It was shown in [1] that
the pressure field of the penalized problem converges to the pressure in the original
boundary value problem. The discretization that we use is consistent and stable, and
therefore the numerical solution converges to the exact solution of the continuous
penalized problem.

3. Virtual insect model. We previously described the fluid module where the
geometry is taken into account by the penalization method, which is the interface
with the insect module described next.

Insects fly by flapping their wings, which are basically flat with sharp edges and
operate typically at a high angle of attack. In the following, we describe in detail the
insect framework used in this work, the essential task being to construct χ and us,
which enter (2.1). The virtual insect consists of a body and two wings, all of which
are performing solid body rotations around three axes and are assumed to be rigid.
Therefore, we will make use of the rotation matrices

Rx (ξ) =

⎛⎝ 1 0 0
0 cos ξ sin ξ
0 − sin ξ cos ξ

⎞⎠ , Ry (ξ) =

⎛⎝ cos ξ 0 − sin ξ
0 1 0

sin ξ 0 cos ξ

⎞⎠ ,
Rz (ξ) =

⎛⎝ cos ξ sin ξ 0
− sin ξ cos ξ 0

0 0 1

⎞⎠ ,
and define the different reference frames, namely the global x(g), body x(b), stroke
plane x(s), and wing x(w), in which the geometry is defined. As described above, the
mask function is constructed in each evaluation of the right-hand side as a function
of the signed distance function, χ (x) = χ (δ (x)), according to (2.8).

3.1. Body system. The insect’s body is responsible for a major part of the

total drag force. It is described by its logical center x
(g)
cntr, the translational velocity

u
(g)
cntr, and the body angles β (pitch), γ (yaw), and ψ (roll); see Figure 3.1 The center

point x
(g)
cntr does not necessarily coincide with the center of gravity, but is rather an

arbitrary point of reference. A point x(g) in the global coordinate system can be
transformed to the body system using the following linear transformation:

x(b) =Mbody (ψ, β, γ)
(
x(g) − x(g)cntr

)
,

Mbody = Rx (ψ)Ry (β)Rz (γ) .(3.1)

Since rotation matrices do not commute, it is important to note that the body is first
yawed, then pitched, and finally rolled, which is conventional in flight mechanics. The
geometry of the body is defined in the body reference frame. The angular velocity of
the body in the global system is

Ω
(g)
b = R−1

z (γ)

⎡⎣⎛⎝ 0
0
γ̇

⎞⎠+R−1
y (β)

⎡⎣⎛⎝ 0

β̇
0

⎞⎠+R−1
x (ψ)

⎛⎝ ψ̇
0
0

⎞⎠⎤⎦⎤⎦ ,
Ω

(b)
b =Mbody Ω

(g)
b ,

which defines the velocity field inside the insect resulting from the body motion,

(3.2) u
(g)
b = u

(g)
cntr +M−1

body

(
Ω

(b)
b × x(b)

)
.
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A NOVEL TOOL FOR SIMULATING FLAPPING INSECT FLIGHT S9

Fig. 3.1. Model insect with definitions of the body angles γ (yaw), β (pitch), ψ (roll), the
anatomical stroke plane angle η, the wing coordinate systems, and the wing angles θ (deviation), φ
(position), and α (feathering). All angles are shown with positive sign.

Equation (3.2) is valid also in the wings, since the flapping motion is prescribed
relative to the body.

3.2. Body shape. The body shape is described in the body reference frame
described previously. For instance, for the body depicted in Figure 3.1, which is
composed of an ellipsoidal-shaped thorax and spheres for the head and eyes, the
signed distance function is the intersection of the distance functions for the thorax,
head, and eyes,

(3.3) δbody = max (δthorax, δhead, δeyes) .

The max operator of the signed distances in (3.3) represents the intersection operator
[25]. The signed distances for the components read

δthorax

(
x(b)
)
=

√(
y(b)
)2

+
(
z(b)
)2 −√b2 (1− (x(b)/a)2),

δhead

(
x(b)
)
=
∣∣∣x(b) − x(b)0,head

∣∣∣ ,
δeyes

(
x(b)
)
=
∣∣∣x(b) − x(b)0,eyes

∣∣∣ ,
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S10 ENGELS, KOLOMENSKIY, SCHNEIDER, AND SESTERHENN

where a and b define the axes of the thorax ellipsoid and x
(b)
0,head,eyes are the centers

of the spheres.

3.3. Wing system. We consider only insects with two wings, one on each side,

that are rotating about the pivot points x
(b)
pivot,r and x

(b)
pivot,l. These pivots do not

necessarily lie on the body surface; we rather allow a gap between wings and body.
This gap avoids problems with nonsolenoidal velocity fields at the wing base. It is
conventional to introduce a stroke plane, which is a plane tilted with respect to the
body by an angle η. The coordinate in the stroke plane reads

x(s) =Mstroke

(
x(b) − x(b)pivot

)
.

Here, we use an anatomical stroke angle; that is, the angle η is defined relative to
the body. Within the stroke plane, the wing motion is described by the angles α
(feathering angle or angle of attack), φ (positional or flapping angle), and θ (deviation
or out-of-stroke angle). Applying two rotation matrices yields the transformation from
the body to the wing coordinate system:

x(w) =Mwingx
(s) =MwingMstroke

(
x(b) − x(b)pivot

)
.

When flapping symmetrically, i.e., both wings following the same motion protocol,
the stroke and wing rotation matrices for the left and right wing are given by

Mstroke,l = Ry (η) , Mstroke,r = Rx (π)Ry (η) ,

Mwing,l = Ry (α)Rz (−θ)Rx (φ) , Mwing,r = Ry (−α)Rz (−θ)Rx (−φ) ,

where, due to the rotation Rx (π), the sign of θ for the right wing does not have to
be inverted. The angular velocities of the wings are given by

Ω(b)
w =M−1

stroke

⎡⎣R−1
x (φ)

⎡⎣⎛⎝ φ̇
0
0

⎞⎠+R−1
z (−θ)

⎡⎣⎛⎝ 0
0

−θ̇

⎞⎠+R−1
y (α)

⎛⎝ 0
α̇
0

⎞⎠⎤⎦⎤⎦⎤⎦ ,
Ω(w)

w =Mwing Ω
(b)
w ,

which is used to compute the velocity field resulting from the wing motion,

u(w)
w = Ω(w)

w × x(w),

u(g)w =M−1
body M

−1
wing M

−1
stroke u

(w)
w .(3.4)

The total velocity field inside the wings is given as the superposition of the body and
wing rotation,

u(g)s (x ∈ {xw}) = u(g)w + u
(g)
b .

The actual kinematics, i.e., the angles α (t), φ (t), and θ (t), are parametrized by either
Fourier or Hermite interpolation coefficients and read from a *.ini file.
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A NOVEL TOOL FOR SIMULATING FLAPPING INSECT FLIGHT S11

Fig. 3.2. Realistic wing shapes are described in polar coordinates R (ϑ).

3.4. Wing shape. In the previous section we defined the wing reference frame
x(w), in which we now describe the wing’s signed distance function δ. In general, we
define a set of several signed distance functions, each of which describes one surface
of the wing. The signed distance function of the entire wing is then given by their
intersection. For some model insects, we consider simple wings for which straightfor-
ward analytical expressions are available. For a rectangular wing, for instance the one
illustrated later in Figure 5.2(c), we find for the signed distance function

(3.5) δ
(
x(w)
)
= max

(
x(w) − b;x(w) − (B − b) ; y(w) − 1; a− y(w); |z| − h/2

)
.

For realistic insect wings, however, we parametrize the wing shape in polar coordi-
nates. As illustrated in Figure 3.2, the shape in the wing plane is described by the

center point x
(w)
c , which is arbitrary as long as the function R (ϑ) is unique for all ϑ.

To sample the wing on a computational grid, we need a function R (ϑ) that can be
evaluated for all ϑ. As R (ϑ) is naturally 2π-periodic, a truncated Fourier series can
be used:

(3.6) R (ϑ) =
a0
2

+
N∑
i=1

ai cos (2πiϑ) +
N∑
i=1

bi sin (2πiϑ) .

In practice, (3.6) has to be evaluated for all grid points in the vicinity of the wing,
which requires O (NxNyNz) evaluations with a small constant. The computational
cost can, however, be significant, which is why (3.6) is evaluated for 25,000 values
of ϑ once during initialization. Afterwards, linear interpolation is used for its lower
computational cost. The signed distance for such a wing then reads

δ
(
x(w)
)
= max

(∣∣∣z(w)
∣∣∣− h/2; r (ϑ)−R (ϑ)

)
.

If a wing cannot be described by one radius, because R (ϑ) is not unique, several radii
and center points can be used [4].

3.5. Power requirement. Actuating the wings requires power expenditures
that are very difficult to measure directly. In numerical simulations, the power can
be obtained directly, since the aerodynamic torque moment m with respect to the
wing pivot point is available from (2.7). The power Paero required to move one wing
is found to be

(3.7) Paero = −m · (Ωw − Ωb) ,

which is equivalent to the definition Paero =
∫
udF given in [21]. In addition to the

aerodynamic power, inertial power has to be expended, i.e., the power required to
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S12 ENGELS, KOLOMENSKIY, SCHNEIDER, AND SESTERHENN

move the wing in a vacuum. As the flapping motion is periodic, its stroke-averaged
value is zero. The inertial power Pinert is positive if the wing is accelerated (power
consumed) and negative if it is decelerated. The definition is

Pinert = Ω(w)
w ·
(
J (w)Ω̇

(w)

w +Ω(w)
w × J (w)Ω(w)

w

)
with the wing tensor of inertia J (w) [3]. The sum of inertial and aerodynamic power
can be negative during deceleration phases, which would mean that the insect can
store energy in its muscles. It is unknown to what extent this can be realized, and
it is thus often conservatively assumed that energy storage is not possible, in which
case the total power Ptotal is given by Ptotal = max (Pinert + Paero, 0).

3.6. Governing equations in free flight. Until now we have considered the
insect to be fixed, i.e., tethered in the computational domain. In free flight, the solid
body dynamics equations that describe the motion of the insect have to be solved
together with the Navier–Stokes equations that describe the motion of the fluid. The
body translation is then governed by

M u̇
(g)
cntr = F (g),

where F (g) contains the aerodynamic and gravitational forces and M is the mass of
the insect. For simplicity, xcentr and ucentr correspond to the center of gravity in
the case of free flight. To handle the rotational degrees of freedom, we employ a
quaternion-based formulation, similar to the one proposed in [20], which avoids the

“Gimbal lock” problem. The governing equation for the angular velocity Ω(b) in the
body reference frame reads

J (b)Ω̇
(b)

+

⎛⎜⎝ 0 −Ω(b)
z Ω

(b)
y

Ω
(b)
z 0 −Ω(b)

x

−Ω(b)
y Ω

(b)
x 0

⎞⎟⎠J (b)Ω(b) = m(b),

where J (b) is the moment of inertia around the body axes
(
x(b), y(b), z(b)

)
and m is the

vector of torque moments as defined in (2.7). The skew-symmetric term stems from
the change into a moving reference frame. We introduce the normalized quaternion
ε with components εi, i = 0, . . . , 3,

∑
ε2i = 1. The governing equations for the

quaternion state are

ε̇ =
1

2
ST Ω(b),

with the matrix

S =

⎛⎝ −ε1 ε0 ε3 −ε2
−ε2 −ε3 ε0 ε1
−ε3 ε2 −ε1 ε0

⎞⎠ .
Assuming J (b) to be constant and the body axes to be the principal axes of inertia

(i.e., J (b) is diagonal), the following first order system set of 13 equations is obtained:
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A NOVEL TOOL FOR SIMULATING FLAPPING INSECT FLIGHT S13

(3.8)
d

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
(g)
cntr

y
(g)
cntr

z
(g)
cntr

u
(g)
cntr,x

u
(g)
cntr,y

u
(g)
cntr,z

ε0
ε1
ε2
ε3

Ω
(b)
x

Ω
(b)
y

Ω
(b)
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u
(g)
cntr,x

u
(g)
cntr,y

u
(g)
cntr,z

F
(g)
x /M

F
(g)
y /M(

F
(g)
z /M − g

)(
−ε1Ω(b)

x − ε2Ω(b)
y − ε3Ω(b)

z

)
/2(

ε0Ω
(b)
x − ε3Ω(b)

y + ε2Ω
(b)
z

)
/2(

ε3Ω
(b)
x + ε0Ω

(b)
y − ε1Ω(b)

z

)
/2(

−ε2Ω(b)
x + ε1Ω

(b)
y + ε0Ω

(b)
z

)
/2((

J
(b)
y − J (b)

z

)
Ω

(b)
y Ω

(b)
z +m

(b)
x

)
/J

(b)
x((

J
(b)
z − J (b)

x

)
Ω

(b)
z Ω

(b)
x +m

(b)
y

)
/J

(b)
y((

J
(b)
x − J (b)

y

)
Ω

(b)
x Ω

(b)
y +m

(b)
z

)
/J

(b)
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which is solved with the same time discretization as the fluid. The rotation matrix
Mbody is then computed from the quaternion εi,

(3.9) Mbody =

⎛⎝ ε20 + ε21 − ε22 − ε23 2 (ε1ε2 − ε3ε0) 2 (ε1ε3 + ε2ε0)
2 (ε1ε2 + ε3ε0) ε20 − ε21 + ε22 − ε23 2 (ε2ε3 − ε1ε0)
2 (ε1ε3 − ε2ε0) 2 (ε2ε3 + ε1ε0) ε20 − ε21 − ε22 + ε23

⎞⎠ ,
which replaces the definition in (3.1) in the free-flight case. The initial values at time
t = 0 for εi can conveniently be computed from a set of yaw, pitch, and roll angles:⎛⎜⎜⎝

ε0
ε1
ε2
ε3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
cos (ψ/2) cos (β/2) cos (γ/2) + sin (ψ/2) sin (β/2) sin (γ/2)
sin (ψ/2) cos (β/2) cos (γ/2)− cos (ψ/2) sin (β/2) sin (γ/2)
cos (ψ/2) sin (β/2) cos (γ/2) + sin (ψ/2) cos (β/2) sin (γ/2)
cos (ψ/2) cos (β/2) sin (γ/2)− sin (ψ/2) sin (β/2) cos (γ/2)

⎞⎟⎟⎠ .
In the actual implementation, we multiply the right-hand side of (3.8) with a six
component vector with zeros or ones, to deactivate some degrees of freedom.

4. Parallel implementation. Thus far we have described the numerical method
employed by the FluSI code, which is based on the volume penalization method com-
bined with a pseudospectral discretization. This framework allows for a high degree of
modularization, since all geometry is encoded in the mask function and the solid veloc-
ity field. The framework is intended to be applicable also for higher Reynolds number
flow, for which small spatial and temporal vortical structures appear. To resolve these
scales, high resolution and therefore the usage of high-performance computers is re-
quired. To this end, our code is designed to compute on massively parallel machines
with distributed memory architectures. The parallel implementation is based on the
MPI protocol and written in FORTRAN95.

For the fluid calculations the P3DFFT library [26] is used to compute the three-
dimensional Fourier transforms. This library provides a parallel data decomposition
framework and employs the FFTW library [11] for the one-dimensional Fourier trans-
forms. The flow variables are stored on the three-dimensional Cartesian computational
grid. Each MPI process holds only a portion of the total data, and the parallel decom-
position is performed on at most two indices; i.e., a pencil decomposition is used. The
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S14 ENGELS, KOLOMENSKIY, SCHNEIDER, AND SESTERHENN

Fig. 4.1. Parallel scaling tests on a large-scale computing cluster of type IBM BlueGene/Q.
Left: Isotropic turbulence simulation without insect, for two different resolutions. Fifty time steps
have been performed. The reference simulation is the 1024 run. Right: Scaling test for a bumblebee
simulation (see section 6). Two complete strokes have been computed, and the timing is averaged
over the second one. The reference simulation is the 2048 cores run.

x-direction is not split among processes; the code can thus run on NyNz processes at
most. This limitation is, however, not of practical importance, since NyNz usually
exceeds the number of available CPUs by orders of magnitude. Besides the Fourier
transforms, the operations are local; i.e., they do not require interprocessor commu-
nication. The parallel scaling test for the fluid module is shown in Figure 4.1(left) for
the case of an isotropic turbulence simulation and two different problem sizes, 2563

and 7683. The latter shows good scaling up to 8192 CPU on the IBM BlueGene/Q
machine1 used for the tests.

The insect module is used to generate the χ-function and the solid body velocity
field us. It is crucial that the implementation not spoil the favorable scaling properties.
The module is therefore designed around a derived insect datatype called diptera,
which holds all properties of the insect, such as the wing shape, body position, and
Fourier coefficients of the wing kinematics. This object is of negligible size, and
therefore each MPI process holds a copy of it. The task to construct the penalization
term is then again completely local. Forces and torques (see (2.6)–(2.7)) are computed
efficiently with the MPI allreduce command. It is further necessary to distinguish
between distinct parts of the mask function, e.g., body and wings and possibly outer
boundary conditions, like channel walls. To accomplish this, we introduce the concept
of mask coloring; i.e., we allocate a second integer*2 array for the mask function
that holds the value of the mask color. This allows us to easily exclude, for example,
channel walls from the force computation in (2.6), and it limits the memory footprint
to two arrays. We further use it to compute the forces acting on the body and wings
individually. If the insect’s body is tethered, there is no need to reconstruct it every
time the mask is updated. The mask coloring can in this case be used easily to delete
only the wings from the mask function while keeping the body in memory. This
reduces the CPU time requirement of the mask function, since the body occupies a
relatively large volume (compared to the wings), and consequently a larger number
of grid points are affected.

Figure 4.1(right) shows the scaling test of an insect simulation. The insect model
is the bumblebee presented in section 6, but the scaling behavior is the same for any
other model. We computed two complete strokes at a resolution of 1152× 768× 768,

1http://www.idris.fr/eng/turing/
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Algorithm 1. General process for a simulation.

1. Initialization. Read parameters from *.ini file, allocate memory, set up fluid
initial condition, initialize P3DFFT

2. Begin loop over time step
(a) Generate mask function χ (x, tn) and solid velocity field us (x, t

n) .
(b) Determine time step Δt.

(c) Compute sources F (un) = −ωn × un − χn

Cη
(un − uns )− 1

Csp
∇× (χspω

n)
∇2 .

(d) Add pressure gradient Fn ← Fn −∇ [(∇ · Fn) /∇2
]
.

(e) Advance fluid to new time level un+1 = AB2 (un, Fn) .
(f) Optional: Advance free-flight equations to new time level, using the AB2

scheme.
(g) Output: Write flow statistics and flow-field data to disk.

3. When terminal time is reached, free memory and quit.

Fig. 4.2. Partition of computational efforts spent on a bumblebee simulation (see section 6).
The resolution is 1152× 768× 768. Most efforts are spent on advancing the fluid in time, which in
turn is largely dominated by the computation of fluid source terms. All percents are with respect to
total execution time.

and the elapsed walltime was measured for the second one. The parallel scaling is
virtually the same as in the pure fluid case, indicating that the insect module indeed
does not spoil parallel scaling efficiency.

The general process for a simulation is summarized in Algorithm 1. All param-
eters, like the resolution, etc., are read from a *.ini file, which avoids recompiling
the code every time a parameter is changed. The code writes time series of quantities
like the fluid forces, enstrophy, or aerodynamic power to ASCII *.t files. Flow field
data, such as the velocity and pressure fields, are stored using the hierarchical data
format (HDF5) library, in order to guarantee maximum compatibility with third-party
applications, such as the open source visualization software Paraview, which is used
for the visualizations shown in the results section. Figure 4.2 shows how the comput-
ing time spent on various tasks is distributed. The computation is dominated by the
fluid time stepping (87.8%); the remaining parts are used in the computation of flow
statistics and field output. Computing the source terms is by far the most significant
contribution, and the generation of the geometry consumes only about 8% of the total
time.
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S16 ENGELS, KOLOMENSKIY, SCHNEIDER, AND SESTERHENN

Fig. 5.1. Settling velocity of a falling sphere, experimental results by Mordant and Pinton [23];
we present results for coarse, medium, and fine grids.

5. Validation tests. For code validation we consider four test cases with in-
creasing complexity: a falling sphere, a rectangular flapping wing, the hovering flight
of a fruit fly, and the free flight of a butterfly model.

5.1. Falling sphere. The first test case to validate the flow solver is the sedi-
mentation of a sphere, which in our terminology is an insect without wings and with a
spherical body. We consider case 1 proposed by Mordant and Pinton [23], who studied
the sedimentation problem experimentally in a water tank. The sphere of unit diam-
eter and mass M = 1.3404 is falling in fluid of viscosity ν = 0.0228 and unit density.
The dimensionless gravity is g = 0.8036, and the terminal settling velocity obtained
from the experiments is U = 0.9488. We perform a grid convergence test using the do-
main size 8×8×16 and parametersNx×Ny×Nz×Cη of a coarse (96×96×192×10−3),
medium (192 × 192 × 384 × 2.5 · 10−4), or fine (384 × 384 × 768 × 6.25 · 10−5) grid.
The number of points per penalization boundary layer is K = 0.0573. The results of
the convergence study are illustrated in Figure 5.1, and the settling velocity for the
finest resolution differs from the experimental findings by less than 1%. The finest
resolution required 30 GB of memory and 34,400 CPU hours on 1024 cores to perform
266,667 time steps. The computational cost is relatively high, since small values of
Cη are required, as the Reynolds number is small.

5.2. Validation case of a rectangular flapping wing. We consider the setup
proposed by Suzuki, Minami, and Inamuro [34, Appendix B2]. It considers only one
rectangular wing with a finite thickness, neglecting thus the body and the second
wing. The fact that the thickness is finite and the geometry rather simple, compared
to actual insects, motivates the choice of this setup. The wing kinematics are given
by φ = φm cos (2πt), α = αm

tanh cα
tanh (cα sin (2πt)), and θ = 0, where φm = 80◦,

αm = 45◦, cα = 3.3; the motion is symmetric for the up- and downstroke, and is
depicted in Figure 5.2(a)–(b). The rectangular wing and the wing coordinate system
are illustrated in Figure 5.2(c). We normalize the distance from pivot to tip to unity,
which yields a = 1.6667, b = 0.0667, B = 0.4167 and a wing thickness of h = 0.04171.
The Reynolds number is set to Re = UtipB/ν = 100 with Utip = 2πφm, yielding
the kinematic viscosity ν = 0.0366. In the present simulations, we discretize the
domain of size 3 × 3 × 3 using 512 × 512 × 512 points and a penalization parameter
of Cη = 1.25 · 10−4 (K = 0.365). The reference computation in [34] is performed in a
domain of size 4.16× 4.16× 4.16, using a fine grid near the wing and a coarse one in
the far-field. Based on the resolution of the fine grid, Δx = B/50, the corresponding
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A NOVEL TOOL FOR SIMULATING FLAPPING INSECT FLIGHT S17

Fig. 5.2. Flapping rectangular wing. (a) Kinematics used in the test case, as given by Suzuki,
Minami, and Inamuro [34]. (b) Visualization of the wing kinematics by a chord section (without
body; color represents time). (c) Geometry of the flapping rectangular wing. In contrast to [34], we
normalize the distance between pivot and wing tip to unity. (d) Time evolution of the vertical force
acting on the wing for the last two strokes, with the reference solution presented in [34].

equidistant resolution would be 5003. In our simulations, the body reference point

is located at x
(g)
cntr = (1.5, 1.5, 1.7) and coincides with the wing pivot point; thus

x
(b)
pivot = 0. The orientation of the body coordinate system is given by ψ = 0◦,
β = −45◦, γ = 45◦, and η = −45◦, where the 45◦ yaw angle was added to keep
the wing as far away from the vorticity sponges as possible. A total of four strokes
has been computed, starting with a quiescent initial condition, u (x, t = 0) = 0. The
outer boundary conditions on the domain are homogeneous Dirichlet conditions in the
z-direction and a vorticity sponge, extending over 32 grid points with Csp = 10−1, in
the remaining directions. The simulation required 35 GB of memory and 5785 CPU
hours on 1024 cores. A total of 27,701 time steps was performed.

The resulting time series of the vertical force is illustrated in Figure 5.2(d). It
takes the first two wingbeats to develop a periodic state, since the motion is im-
pulsively started, and then the following strokes are almost identical. The present
solution agrees well with the reference solution, and the relative root-mean-squared
difference is ‖F − Fref‖2 / ‖Fref‖2 ≈ 4% over the last two periods.

5.3. Hovering flight of a fruit fly model. The third validation test presents
a comparison of aerodynamic measures of a hovering fruit fly with the results reported
by Maeda and Liu [21]. Their simulations are based on overset grids; i.e., a body-
fitted grid for the wings (65 × 65 × 11 each) and the body (61 × 61 × 9), as well
as a background grid (161 × 141 × 127), have been used to solve the incompressible
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S18 ENGELS, KOLOMENSKIY, SCHNEIDER, AND SESTERHENN

Fig. 5.3. Hovering fruit fly, for comparison with [21]. (a) Wingbeat kinematics in the side view.
(b) Time evolution of the wing angles. (c) Drawing of the insect’s body in the plane y(b) = 0. The
body is rotationally symmetric with a circular center line. (d) Drawing of the wing shape, together
with its pivot point.

Navier–Stokes equations, approximated in the artificial compressibility formulation,
using a finite volume discretization.

The fruit fly considered is defined in Figure 5.3. The wing length from pivot point
to wing tip, R = 2.47mm, the fluid density �f = 1.225 kg/m3, and the wingbeat fre-
quency f = 218Hz are used for normalization. The body, depicted in Figure 5.3(a),(c),
has an elliptical cross section with center points following an arched centerline of ra-

dius rbc = 0.94644 centered at x
(b)
bc = −0.244769, z(b)bc = −0.9301256. The wing pivot

points are located at x
(b)
pivot,rl = (−0.12, ±0.1445, 0.08). To facilitate reproduction,

the supplementary material for this paper contains STL files (StereoLithography) of
the fruitfly geometry, as well a parameter file that can be used to reproduce the re-

sults with FluSI. The insect is tethered at x
(g)
c = (1.6, 1.6, 1.9) in a computational

domain of size 3.2 × 3.2 × 3.2, discretized with 640 × 640 × 640 Fourier modes and
a penalization parameter of Cη = 1.15 · 10−4 (K = 0.23). Its body orientation is
given by ψ = 0, β = −45◦, γ = 45◦, and η = −45◦. The fruit fly hovers; thus the
body position and orientation do not change in time. A total of four wing beats has
been computed, and the initial condition is fluid at rest, u (x, t = 0) = 0. We apply
a vorticity sponge in the x- and y-directions (32 grid points thick with Csp = 10−1)
and impose no-slip boundary conditions in the z-direction; i.e., we impose a floor and
ceiling. The simulation required 68 GB of memory and 15,100 CPU hours on 1024
cores. A total of 48,200 time steps was performed.

The wing shape is illustrated in Figure 5.3(d). It has a mean chord cm = A/R =
0.33R = 0.82 mm. The Reynolds number is Re = Utipcm/ν = 2ΦRfcm/ν = 142,
where Φ = 2.44 rad is the stroke amplitude of the positional angle, Utip is the mean
wingtip velocity, and ν = 1.5·10−5m2/s is the kinematic viscosity of air. The time evo-
lution of the wing kinematics is illustrated in Figure 5.3(b). The up- and downstroke
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Fig. 5.4. Hovering fruit fly, comparison with [21]. Top: Total vertical force. Bottom: Aero-
dynamic power. Gray shaded areas denote upstrokes; stroke averages are indicated by circles. The
mean values during the last stroke differ by 3.26% and 1.00% for the vertical force and the power,
respectively.

are not symmetric, and the wing trajectory (Figure 5.3(a)) shows the characteristic
∪-shape.

The results for the lift force, normalized with the weight, and the aerodynamic
power in W/kg body mass are presented in Figure 5.4. As the mass of the model
insect was not given in [21], we assumed the fourth stroke of the reference data to
balance the weight, yielding m = 1.02mg. Small circles at midstroke indicate stroke-
averaged values. For the stroke-averaged vertical force, we find respectively 10.03%,
6.19%, 4.03%, and 3.26% relative difference from the reference data for the four strokes
computed, which can be explained by the impulsively started motion at the beginning
of the first stroke. The time evolution, e.g., the occurrence of peaks, is very similar in
both data sets. The agreement is even better for the aerodynamic power, with relative
differences of 0.57%, 0.06%, −0.95%, and −1.00% for the stroke-averaged values. Both
power and lift peak during the translation phase of the up- and downstroke and reach
a minimum value at the reversals.

The flow field generated by the fruit fly model is visualized in Figure 5.5 by
isosurfaces of the Q-criterion, which can, for incompressible flows, be computed as
Q = ∇2p/2; see [18, p. 23]. The flow field exhibits the typical features, such as a
leading edge vortex and a wingtip vortex.

5.4. Butterfly model in free flight. To complete the validation section, we
consider the freely flying butterfly model presented in [34, section 5.3]. The body
consists of a thin rod with quadratic wings of length R = 1, and the wing kinematics
is inspired by a butterfly. Figure 5.6(top row) illustrates the prescribed wingbeat
kinematics, converted to the convention used in this work. The Reynolds number
is Re = 300 = UtipR/ν, where Utip = π is the mean wingtip velocity. The mass
of the butterfly is M = 38, and the moments of inertia of the body are given by
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Fig. 5.5. Snapshot of the vortical structures generated by a hovering fruit fly model, visualized
by isosurfaces of the Q-criterion (Q = 100) shortly before the ventral stroke reversal t/T = 0.4.
Typical feature of flapping flight, such as the leading edge and wingtip vortex, are visible.

Fig. 5.6. Freely flying butterfly model for comparison with [34]. Top: Kinematics and illustra-
tion of the wingbeat. Middle left: Coordinates of the center of mass for the horizontal (solid lines)
and vertical (dashed line) component. Middle right: Body pitch angle β. Bottom: Vertical (left) and
forward (right) force component. Symbols indicate stroke averages. Dash-dotted lines mark weight.
Overall agreement is good.
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J
(b)
y = J

(b)
z = 3.1667. The roll motion is inhibited (five degrees of freedom), and the

mass of the wings is neglected. Gravitational acceleration is given by g = 0.1304.
Present computations are performed on a domain of size 6× 6× 6 using a resolution
of 1024×1024×1024, and the penalization constant is Cη = 1.4 ·10−4 (K = 0.2). We
apply a vorticity sponge in all directions, centered around the moving center of the

insect x
(g)
cntr. We computed nine strokes (65,066 time steps); the computation allocated

200 GB of memory and consumed 79, 915 CPU hours on 4096 cores. The parameter
files used in this computation are in the supplementary materials.

Figure 5.6(middle row) compares the coordinates of the center of mass and the
body pitch angle with the reference solution, showing good agreement with the ref-
erence computation. A slight deviation in the vertical component can be observed,
which can be explained by the fact that the slight differences in the forces (see Figure
5.6(bottom row)) are integrated twice with respect to time. The general agreement
is good, and we conclude that our code is validated.

6. Application to a bumblebee model in forward flight. In order to
demonstrate the applicability of the software environment to more complex insects at
higher Reynolds number, we consider in this section a different insect model with a
Reynolds number of Re = 2ΦRfcm/ν = 2042. The model is derived from a bumble-
bee, and its detailed morphology and kinematics can be found in the supplementary
materials (STL file of the geometry as well as the parameter files that can be used
to reproduce the results with FluSI). The model has also been used in [10, supple-
mental materials]. The body contains details such as the legs and antennae, since
they can be easily included in the present framework. The bumblebee is considered in
forward flight at u∞ = 1.246. The domain size is set to 6× 4× 4 and discretized with
1152 × 768 × 768 grid points. The penalization parameter is set to Cη = 2.5 · 10−4

(K = 0.074). Four strokes have been simulated, requiring 26, 467 CPU hours on 1024
cores and 153.6 GB of memory.

Fig. 6.1. Flow field generated by the model bumblebee in forward flight, visualized by the
‖ω‖ = 100 isosurface of vorticity magnitude.

Figure 6.1 visualizes the flow field generated by the model by the ‖ω‖ = 100
isosurface of vorticity magnitude, for the times t/T = 0.3 and 0.95, where T is the
period time. At t/T = 0.3, the leading edge vortex and the wingtip vortex are
clearly visible, yet the flow field presents much smaller scales than in the case of
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Fig. 6.2. Left: Radial energy spectra in a slice perpendicular to the flow direction (x = 2.67).
The spectra are full and exhibit an inertial and dissipative range. The resolution is 1152×768×768;
thus the highest resolved wavenumber is kmax = 256 · (2π/4), due to the dealiasing using the 2/3
rule. Right: Position of the slice and insect in the computational domain of size 6× 4× 4.

Fig. 6.3. Influence of the vorticity sponge in a bumblebee simulation. Shown is the ‖ω‖ = 20
isosurface of vorticity magnitude. A simulation with a longer (�x = 6, blue) and a shorter (�x = 4,
orange) domain has been performed. In the shorter simulation, the sponge occupies the region
3.5 ≤ x ≤ 4. The sponge constant is Csp = 10−1.

a fruitfly (Figure 5.5). At t/T = 0.95, which is shortly before the beginning of
a new cycle, the vortex “puff” shed at the stroke reversal (t/T ≈ 0.5) is visible.
The flow field is both spatially and temporally intermittent. Figure 6.1 gives the
impression of a turbulent flow field, which can be quantified by the energy spectra
of the velocity in a two-dimensional slice perpendicular to the flow direction. Figure
6.2 shows the chosen position of the slice at x = 2.67, and the radial energy spectra
for ten times throughout the cycle. At any time t/T , the energy spectrum E(k) =

1/2
∑

k−1/2≤|k|<k+1/2 |ûx (k)| 2 + |ûz (k)|2 + |ûz (k)|2, where k = (kx, ky), is full and

exhibits an inertial range with a k−5/3 slope, which is a typical feature of turbulence.
As described in section 2.3, a vorticity sponge technique has been used to overcome

the periodicity. Let us briefly discuss the influence of the sponge and the choice of
parameters. Figure 6.3 visualizes the flow field from two simulations, one with a
shorter domain (4 × 4× 4) and the previously discussed one. In the shorter domain,
a sponge is active in the region 3.5 ≤ x ≤ 4 with a constant of Csp = 10−1.

7. Conclusions and perspectives. This article presents the open source soft-
ware FluSI (https://github.com/pseudospectators/FLUSI) for the numerical simula-
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tion of the aerodynamics of flapping insect flight running on massive parallel com-
puter architectures. Different benchmarks demonstrated the efficiency of the code
and showed its validity in comparison with results from the literature. The numerical
method is based on a Fourier pseudospectral discretization of the three-dimensional
incompressible Navier–Stokes equations. Thus no artificial numerical diffusion or dis-
persion is introduced into the discretization. The no-slip boundary conditions for the
complexly shaped and time varying geometry of the flapping wings and the insect
body are imposed with the volume penalization method. The penalization parameter
is chosen such that the modeling error, due to penalization, and the discretization
error are balanced. The computational cost of the flow solver is essentially due to the
Fourier transforms. Benefiting from the efficient implementation of three-dimensional
FFT, excellent scaling on large-scale computing clusters has thus been obtained. A
limitation of the current approach is that equidistant Cartesian grids are required
and a compromise between the domain size and the number of grid points has to be
imposed. The modular structure of the FluSI code permits us to design different and
complex geometries for the insect shape and its wings easily and also to change their
kinematics. For the free flight option, equations in a quaternion-based formulation
are solved. Different flow configurations, like channel flows with laminar or turbulent
inflow or including bluff bodies of almost arbitrary shape, are possible using penal-
ization together with a sponge technique.
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