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Abstract.

Fluid-structure interaction of the flapping wings of a hovering bumblebee is considered. Kinematic
reconstruction of the wing motion using synchronized high-speed video recordings is described,
that provides the necessary input data for numerical modelling. Computational fluid dynamics
(CFD) solver is combined with a dynamical model that describes the wing motion. Results of a
numerical simulation are presented.
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1 Introduction

Many insect species are skilful hovering fliers that can generate positive lift during
both upstroke and downstroke. This ability is achieved by large pitching (feathering
angle) rotations of the wings necessary for maintaining positive kinematic angle of
attack. Earlier research (e.g., |9, 5|) has shown that similar kinematic patterns
can be produced by a wing with only up- and downstroke motion being prescribed,
and elastic hinge attachment permitting passive pitching rotation. By construction,
this model mimics dipteran wings, and serves a mechanism for regulating the high-
frequency flapping motion only using low-frequency control input [1]. It is logical
to inquire whether this control strategy can be broadly used by all flying insects. In
particular, it may be suitable for hymenopterans since their hindwings are connected
to the forewings by hooks. To assess the accuracy of this hypothesis, we consider
hovering flight of a bumblebee Bombus ignitus. Our work consists of morphological
measurements in order to quantify the geometrical and the inertial properties of the



THE DYNAMICS OF BUMBLEBEE WING PITCHING ROTATION

camera 1, frame 517 camera 1, frame 520 camera 1, frame 525

camera 3, frame 517 camera 3, frame 520 camera 3, frame 525

Figure 1: Sample frames from two synchronized video recordings: camera 1 (top row)
and camera 3 (bottom row). Frames 517 and 520 correspond to downstroke, frames 525
correspond to upstroke. Theoretical rigid wing contour lines, shoulder points (plus signs)
and body markers (dots) are superposed on the images.

wings, construction of a kinematic model of the insect, free-flight measurement of
the body posture and of the wing kinematics, and computational fluid dynamics
(CFD) simulations. The objective of this paper is to describe the last two steps
taking one selected flight of one individual bumblebee as an example. Statistical
analysis of similar results obtained for multiple individuals is our current work in
progress and is will be presented elsewhere.

Section 2 describes the process of three-dimensional reconstruction of the wing kine-
matics from synchronized video recordings. The outcome of it is time evolution of
the wing kinematic angles and the body attitude. Section 3 shows the results of a
CFD numerical simulation of the same flight. Tentative conclusions are drawn in
Section 4.

2 Kinematic Reconstruction

A hive (Mini Polblack, Koppert, Arysta LifeScience Asia, Japan) was maintained at
Chiba University through May 2016. The bees were trained to fly through a tunnel
with transparent ceiling. One end of the tunnel was connected to the hive and the
other to the feeding area. In the duration of the experiment, the humidity was near
to 80% and the temperature was maintained at about 22°C. The test section in the
flight tunnel was illuminated using lights. The video recordings of the hovering flight
discussed in this paper were acquired using three synchronized high-speed cameras
(FASTCAM SA3, Photron, Japan), equipped with CCTV lens (B2514D or B5014A,
Pentax, Japan) at 2000 fps, but only two views were used in the present analysis.
The image resolution was set to 1024 x 1024 pixels. The shutter speed was 1/7500 s.
Sample frames from two cameras, with a zoom on the insect, are shown in figure 1.
Extended description of the experiment and data acquisition setup can be found in

[6]-
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Figure 2: Left: trajectories of three points on the body - one on the head, one on the dorsal
surface of the abdomen, and one on the rear end of the abdomen. Right: time evolution
of the velocity magnitude of these points.

For kinematic analysis of the three-dimensional motion of the bumblebee body and
flapping wings, we modified the open-source software DLTv5. The software is based
on the direct linear transform method [4]. It is implemented in Matlab (MathWorks,
Inc., USA). The modification mainly consists in introducing the same kinematic
model as used in our CFD solver, FluSI [3|. Each forewing-hindwing pair is ap-
proximated as a single solid flat plate that can rotate about the hinge point at the
shoulder, therefore its position with respect to the body is fully described with three
angles. The body is also assumed rigid, therefore it is straightforward to relate the
position of the shoulder points in the laboratory reference frame to the position of
the center of mass and the three Euler angles of the body.

The video sequence selected for the present analysis corresponds to the hovering
flight #6 in [7]. The body moves very little during the entire video. Nevertheless,
this small motion should be taken into account when calculating the wing angles,
because the latter are sensitive to movement of the hinges. Therefore, we first recon-
structed the three-dimensional motion of the body. We selected three points that
can be easily distinguished by morphological features. As shown in figure 1, point 1
is on the head between the antennae (red marker), point 2 is an abdominal pigmen-
tation feature (green marker), and point 3 is the rear point of the abdomen (blue
marker). Every 10th frame of total 1167 frames in each camera view were analyzed.
The points were manually tracked and their coordinates in the laboratory reference
frame reconstructed using DLTV5, the result being displayed in figure 2(left). Fig-
ure 2(right) shows the velocity magnitude of each point, calculated using central
finite difference approximation. The velocity is no greater than V, = 0.023 m/s,
and the corresponding advance ratio is equal to J =V, /(2@ fR) = 0.0024, where f,
® and R are the wingbeat frequency, amplitude, and the wing length, respectively.
This small advance ratio is indicative of hovering.

The time sequence of almost 6 s is longer than required for digitization of the wing
motion. We therefore select only a subsequence of 40 ms for the further analy-
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Figure 3: Definition of the wing positional angle ¢, feathering angle «, elevation angle 6,
body angle 5 and anatomical stroke plane angle 7. O, is one of the two shoulder points,
Oy is the body center of mass.

sis, which is shaded in figure 2(right). The velocity in it is less than 0.015 m/s.
During this short time interval, time-varying position of the three feature points in
the laboratory reference frame is fit with cubic polynomials in order to filter out
the digitization noise. In the body reference frame, relative position of different
points (i.e., the shoulder hinges, the center of mass and the three selected morpho-
logical features) does not vary in time, therefore, it can be determined from prior
morphological measurement or time-averaging over the duration of the entire flight
sequence. Hence, after reconstructing the three-dimensional motion of the selected
morphological feature points, we determine the motion of the entire body including
the shoulder hinge points. The latter are shown in figure 1 with cyan and magenta
plus signs.

As a next step, we track the wing tips, reconstruct the wing tip trajectories, convert
them to the body reference frame and best-fit a plane, in the least-mean-square
sense. The morphological stroke plane angle is determined as the angle between
the normal to that plane and the body longitudinal axis. The stroke plane, in our
definition, is inclined at the same angle to the body and passes through the shoulder
hinge points, as shown in figure 3.

Finally, we determine the time evolution of the wing angles with respect to the
stroke plane, see figure 3 for the definitions. The values of the positional angle ¢,
the elevation angle 6 and the feathering angle v are determined for the left and for
the right wing separately, for every time frame. First approximation to ¢ and @ is
calculated using the wing-tip coordinates relative to the hinge point. After that, the
wing contour projection is superposed on the video image. It is drawn interactively
as the values of ¢, a and # are manually adjusted for the best visual fit. For
this purpose, as for the subsequent CFD simulation, we use the archetypal contour
constructed in [8], scaled with the wing length R = 14.6 mm determined from the
video as the average distance between the shoulder and the wing tip. Example
visualizations of this fit are shown in figure 1. The digitized left (resp., right) wing
contour outline is shown with a cyan (resp., magenta) closed curve. Generally, the
approximation is visually better during the downstroke (first two frames in a row)
than during upstroke (last frame in a row), as the wing deformation is greater during
upstroke.

4
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Figure 4: Time evolution of the wing kinematic angles. Markers show the raw data points
obtained after digitizing each frame. Lines show the result of low-pass filtering and inter-
polation.

The complete measured time sequences of the wing angles are displayed as markers
in figure 4. The resolution of 13 points is high enough to describe the important
repetitive features of the time profiles, such as the double negative peak of a dur-
ing upstroke. The motion is nominally periodic, with small deviations that may
be due to actuation, fluid-structure interaction and measurement errors. The next
processing step consists in low-pass filtering the data at 450 Hz using the 4th order
Butterworth filter and upsampling the result on a 100-times finer grid using spline
interpolation. Thus we discard those points that produce unrealistically large accel-
erations. The resulting time profiles are shown with dotted and dashed lines that
correspond to the left and the right wing, respectively.

From frequency analysis of ¢(t) we find that the flapping frequency is equal to
f =144.6 Hz. We use this value to divide the sequences shown in figure 4 in cycles
of length T'=1/f = 6.92 ms. In figure 5(left), we plot the time evolution of ¢, «
and 0 during each cycle, with t = 0 corresponding to the beginning of downstroke.
The original profiles are shown with thin faded lines. For every time instant ¢ during
the cycle, we calculate the average of 4 subsequent wingbeats. The average time
profiles are shown with thick bright lines in figure 5(left), and thin bright lines in
figure 5(right). These time sequences are very close to periodic. There remains less
than 10 degree difference between the angles of the left wing and those of the right
wing, and we calculate their average. The result is plotted in figure 5(right) using
thick lines. Finally, Fourier analysis of these time sequences is performed. Time
evolution of ¢, a and 6 is described with less than 1 degree error using, respectively,
4, 5 and 4 harmonics. These coefficients are used as input data for the numerical
simulation and analysis presented in the next section.

3 Numerical Modelling

The fluid-structure interaction model of the flapping wings has been implemented
using FluSI, a pseudo-spectral Navier—Stokes solver with volume penalization [3].
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Figure 5: Left: Time evolution of the wing angles reduced to the time scale of one wingbeat
(thin lines) and their average (thick lines). Right: average time profiles of the left and the
right wing kinematics (thin lines) and the average of the two wings (thick lines), where the
time is normalized by the wingbeat period T

In the numerical simulation presented in this paper, the body of the bumblebee is
fixed. The body shape is the same as in [2]. The shape of the wings is derived from
the morphological measurements described in [8].

The positional angle ¢(t) and elevation angle 0(¢) of both wings are prescribed
as periodic functions using Fourier coefficients, as described in the previous section.
The feathering angle «(t) is determined from the following driven oscillator equation

[9]:
I

Yy

g0 = Myero — K(ov — o) — Cx

1 . . . .
+ 1, [5@52 cos? 0 — 6?) sin 2ac — ¢ sin § — ¢f cos O(1 + cos 204)}
+ Iy [¢ cosfcosa + Osina + §¢2 sin 260 sin o« — 2¢0 sin 6 cos a] , (1)

where M., is the aerodynamic pitching moment. Positive 6 is upwards. Typically,
« is positive during downstroke and negative during upstroke. The moments of
inertia are determined by integration of mass distribution in the z,, — y, plane of
the wing, assuming that it is thin and flat, as follows:

Iyy:/ a2, dimy, ]:cy:/ Loy Y1, (2)
Yw w

where ¥, is the wing surface, dm,, is the planar mass element of the wing, and
(@, Yuw) are the coordinates of the element, see [8] for more detail. The aerodynamic
pitching moment M,.,, is obtained by integrating the fluid forces acting on the wing.
The shoulder hinge joint is modelled as a torsional spring with stiffness K, damping
coefficient C' and neutral angle «y.

An example result of the numerical simulation is shown in figure 6. The parameters
of the numerical simulation are as follows. The wing length is equal to R = 14.6 mm
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Figure 6: Left: time evolution of the feathering angle in the experiments and i the numerical
simulation. Right: time evolution of the instantaneous aerodynamic vertical force.

and the flapping frequency is f = 144.6 Hz, as described in the previous section.
The wing beat amplitude that follows from figure 5(right) is ® = 129 deg. Using the
notation as in figure 3, the body angle is equal to § = 47.8 deg and the anatomical
stroke plane angle is 7 = 41 deg. The elastic hinge model uses the stiffness K =
2.52 x 107® N m, damping C' = 0 and neutral angle ay = —0.7 deg. The wing
moments of inertia are equal to I, = 28.14 x 107'? kg m? and I,, = —0.70 x
10712 kg m?.

Since the flapping motion started impulsively at the beginning of the numerical
simulation, to avoid excessively large values of M,.., at startup, the right-hand
side of (1) was multiplied with a function smoothly varying from 0 to 1 during the
time interval from 0.1 to 0.5 of the wingbeat period 7. Therefore, the results of
the simulation during the first wingbeat cycle are not physically significant. To
reach quasi-periodic state of a(t) and the aerodynamic forces, the time span of the
numerical simulation was set to 47'.

In figure 6, gradations of grey are used to distinguish between the results that
correspond to different wingbeat cycles in the numerical simulation. Time variation
of a is almost the same during the last two cycles, see figure 6(right). The r.m.s.
distance is less than 11 deg with respect to a(t) obtained from the measurement
described in the previous section (the blue line in figure 6). This value is of the same
order of magnitude as the combined error of digitization, periodization, etc. The
most obvious discrepancy is in the middle of upstroke when the model neglects wing
deformation and, in particular, rotation of the hindwing relatively to the forewing.
A more sophisticated deformable wing model may be necessary to reach better
agreement in terms of a(t). Nonetheless, the agreement is reasonably good even
using the present single-plate model, therefore, it is not surprising that the time-
varying vertical force obtained from the model (figure 6 right) displays the double
peak profile typical of hovering insects. The mean vertical force is large enough to
support the body mass of 364 mg that is realistic for a bumblebee of this size.
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4 Conclusions

In this paper, we discussed about application of a hinged-plate model to analyze
pitching motion of flapping wings of a bumblebee during hovering. We described
the methodology of kinematic reconstruction based on synchronized video record-
ings and presented an example of aerodynamic force calculation using CFD. In the
model, the forewing and the hindwing are approximated by a one-piece rigid flat
plate. Analysis of the video recordings suggests that the rigid wing contour can be
adequately fit with outline of the real wing, despite some deformation of the latter.
Numerical solution of the differential equation that governs the dynamics of the
model, integrated with a Navier—Stokes solver, results in the wing pitching motion
similar to that observed in the experiment. The r.m.s. error is less that 11 deg,
and the discrepancy is essentially localized around the middle upstroke, when the
flat wing approximation may fail. Nevertheless, the model successfully predicts the
time evolution of the lift force with two almost equal peaks, one during downstroke
and the other during upstroke, that is typical of hovering insets wings. The mean
vertical aerodynamic force estimated from the numerical simulation is reasonably
large to support the body weight.
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