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Flapping insects are remarkably agile fliers, adapted to a highly turbulent environment. We present a series
of high resolution numerical simulations of a bumblebee interacting with turbulent inflow. We consider both
tethered and free flight, the latter with all six degrees of freedom coupled to the Navier–Stokes equations. To this
end we vary the characteristics of the turbulent inflow, either changing the turbulence intensity or the spectral
distribution of turbulent kinetic energy. Active control is excluded in order to quantify the passive response real
animals exhibit during their reaction time delay, before the wing beat can be adapted. Modifying the turbulence
intensity shows no significant impact on the cycle-averaged aerodynamical forces, moments and power, com-
pared to laminar inflow conditions. The fluctuations of aerodynamic observables, however, significantly grow
with increasing turbulence intensity. Changing the integral scale of turbulent perturbations, while keeping the
turbulence intensity fixed, shows that the fluctuation level of forces and moments is significantly reduced if the
integral scale is smaller than the wing length. Our study shows that the scale-dependent energy distribution in
the surrounding turbulent flow is a relevant factor conditioning how flying insects control their body orientation.
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I. INTRODUCTION20

Insect are fast and agile fliers, which stabilize their body posture during flight under a vast variety of environmental conditions21

[5, 37]. While flight in static air requires little steering and corrective changes in aerodynamic force production, flight in22

turbulent air is challenged by unexpected changes in flow conditions at the body and wings. Little is known about the impact of23

turbulence on the aerodynamic performance and energetic cost of flight in insects. In this work, we study how different kinds of24

perturbations affect flapping fliers in free flight.25

In contrast to laminar flows, turbulent flows are dominated by nonlinear interactions and, as a result, excite fluctuations on a26

wide range of scales. After averaging the flow in either ensemble, time or space, we identify different length scales characteristic27

for the turbulent regime. From large to small, these classical scales are: (i) the integral scale Λ where, on average, the velocity28

the strongest, and where therefore energy transport is most active, (ii) the Taylor microscale λ where, on average, the velocity29

gradients are most intense, (iii) the Kolomogorov scale η below which, on average, the flow fluctuations are damped by the fluid30

viscosity [47].31

In nature, unsteady turbulent flow conditions significantly vary depending on the terrain and weather conditions. The “flight32

boundary layer”, characterized by conditions favorable for insect flight, can span for up to 1500 meters above the ground level in33

warm weather [6]. Activity such as long-distance migration is typical of high altitudes while foraging, for example, mainly takes34

place in the vegetation layer up to several meters above the ground. This diversity of flow conditions, besides variation in the35

temperature, density and mean wind speed, exposes flying insects to a variety of turbulent flows, ranging from those dominated36

by wakes and canopy-layer turbulence at low altitude [23, 48, 49], to the atmospheric turbulence determined by weather and37

wind systems at high altitude [59, 60].38

Until now, studies have focused on selected model organisms such as hummingbirds [44], moths [27, 43], bumblebees [50, 51],39

etc., subject to archetypal air flow conditions such as von Kármán wakes [43, 50, 51] or grid turbulence [10]. In the hawkmoths40

Manduca sexta, for example, yaw and roll oscillations of the animal body are synchronized with the vortex shedding frequencies41

in the wake behind a large cylinder [43]. Vortex shedding in von Kármán wakes, however, differs from turbulence since, at42

moderate Reynolds numbers, vortices are shed periodically in time and the flow has strong spatial correlations. Few numerical43

[18] and experimental [10, 11] studies addressed flapping flight in turbulent flow and estimated flow conditions at body and44

wings. In heavy turbulence, for example, bumblebees are highly prone to changes in roll stability and crash if roll velocity45

exceeds a maximum value [10].46

High maneuverability in flight is likely key in coping with turbulence, at the cost of low stability [26, 27]. Insects that stabilize47

their body posture during aerial perturbations thus require fast feedback responses. These responses may rely on passive and48

active changes of wing- and body kinematics. Both mechanisms might help to mitigate aerial perturbations. While passive49

changes of wing kinematics result from the interplay between wing material properties and inertial/aerodynamic forces and thus50

elastic wing deformation [9, 21, 34, 39, 40, 53] active control is imposed by the sensomotor system of the animal and thus51

changes in flight muscle activation [13]. A complex passive mechanism has been reported for the fruit fly Drosophila [2]. The52

latter study suggests that wing rotation about the wing’s longitudinal axis [34] behaves like a system composed of a damped53

torsion spring. The animal might control wing rotation by actively changing stiffness and damping coefficients of this spring, as54

well as the resting feathering angle. In this case, fluid–structure interaction results from a combination of passive changes via55

spring deformation and active changes via modifications of the spring’s elastic property.56

Besides passive changes, insects also possess a large variety of active control mechanisms for body stabilization and flight57

heading control. Studies on flight control highlighted several unique mechanisms of wing motion modulation in insects (see [12]58

for a recent review). These mechanisms include changes in stroke amplitude, stroke frequency, stroke plane, the wing’s angle of59

attack and timing of wing rotation at the end of each half stroke [10, 24]. Freely flying bumblebees, for example, stabilize body60

roll by changes of the relative difference between left and right stroke amplitude [11]. Insects also actively change body shape61

that modifies their inertia tensor during flight. Fruit flies [3], hawkmoths [41] and chestnut tiger butterflies [61], for example,62

change and stabilize their flight heading by changing the angle between thorax and abdomen.63

Previous studies considered the body roll axis of an animal to be most susceptible for aerodynamic perturbations, owing to64

its small moment of inertia compared to yaw and pitch. Flying through turbulence thus produces largest fluctuations about the65

roll axis in insects [50]. To minimize these changes, some insects laterally extend their hind legs that increases the roll moment66

of inertia [10]. Although this behavior has been found in orchid bees, smaller insects such as the fruit fly benefit only little67

from this mechanism owing to their small legs [3]. Since the hind legs of orchid bees are untypically large compared to other68

insect species, it is less likely that the latter mechanism represents a common mechanism for roll control in insect flight [3]. A69

most significant mechanism to cope with air turbulence is aerodynamic damping, resulting from the flapping wing motion. It is70

termed flapping-counter-torque [8, 26, 27] and primarily acts in the direction perpendicular to the stroke plane. In a horizontal71

stroke plane, roll damping only occurs if left and right wings flap at different angle of attack [22]. In an inclined stroke plane, the72

moment vector is deflected from the vertical and contributes to roll dynamics, even during symmetrical motion of both wings.73

The concept of flapping-counter-torque in insects was extended to damping coefficients for all six degrees of freedom of body74

motion [7].75

To understand body posture control of insects flying in turbulent air, we here present a numerical study. Our study models76
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and compares flight of both a tethered and freely flying insect (bumblebee). We consider different turbulent flows and vary their77

turbulence intensity as well as their characteristic length scales, e.g., the integral scale. Under free flight conditions, the model78

insect is allowed to translate along and rotate about all three body axes, in response to aerodynamic, inertial and gravitational79

forces, and moments, respectively. However, we exclude any active control in this work.80

Our previous study [18] showed that in tethered flight even strong inflow turbulence has little effect on mean force production81

and moments, and thus on aerodynamic mechanisms. Building on this finding, we here explore the effects of turbulent length82

scales on a freely flying insect model and demonstrate the effect of turbulence on body posture in free flight. The approach83

allows body motion but ignores any passive deformation, of both body and wing, and also active steering. Our study investigates84

if and how the scale-dependent energy distribution is relevant for body orientation control in flying insect.85

The complicated time-dependent geometry and the resulting complex flow topology challenge numerical simulations of insect86

flight. There are two major numerical approaches for this problem. (i) Overset grids [35, 36, 55], which allow strong refinement87

near surfaces, but considering inflow turbulence is practically excluded because of difficulties in parallelization and hence limited88

resolution. (ii) Immersed Boundary Methods (IBM) which disconnect the flapping motion from the grid and thus simplifies the89

discretization. For flapping flight, finite volume [32, 38] or lattice-Boltzmann type simulations [28, 56] are successful numerical90

methods combined with IBM. Here, we use the volume penalization method combined with a Fourier pseudospectral solver91

[20]. This numerical method is characterized by the absence of numerical dissipation, its high efficiency on massively parallel92

computers thanks to the optimized implementation of FFTs [45] and the possibility to impose turbulent inflow.93

The remainder of the manuscript is organized as follows: the computational setup is illustrated in section II A and the char-94

acteristics of inflow turbulence are described in section II B. Section II C presents the bumblebee model and section II D recalls95

the governing equations and briefly outlines the numerical method. The results and discussion section III presents first tethered96

flight simulations and then different free flight cases. Finally, conclusions are drawn in section IV and some possible directions97

for future work are proposed.98

II. FLOW CONFIGURATION AND NUMERICAL METHOD99

A. Numerical wind tunnel100

We illustrate the computational set up and the flow configuration in Fig. 1. Simulations are performed in a 6R× 4R× 4R101

large virtual wind tunnel (Fig. 1A), where R is the wing length of the insect (see section II C). We initially place the insect at102

xcntr = (2R, 2R, 2R)T and either allow it to move freely as dictated by the fluid forces or tether it to that position. The resolution103

in space is 1152×768×768 equidistant grid points, thus the lattice spacing is ∆ = 5.2 ·10−3R. The mean flow velocity is set to104

u∞ = (1.246R f , 0, 0)T , where f is the wing beat frequency. It compensates for the cruising speed of the insect in laminar flow.105

We initialize the simulation with unperturbed, laminar flow, u(x, t = 0) = u∞. At the outlet, a vorticity sponge [19] minimizes106

the upstream influence of the periodicity of the computational domain. In the inlet region, which covers the first 48 grid points,107

the velocity is set to us = u∞ + u′ , where u′ are velocity fluctuations obtained from a precomputed, homogeneous isotropic108

turbulence (HIT) velocity field (Fig. 1B). The properties of this field are discussed in section II B.109

We rescale the HIT velocity field to insect dimensions preserving dynamic similarity, as HIT simulations are typically per-110

formed in a dimensionless manner. The field is then upsampled using zero-padding in Fourier space to match the resolution of111

the numerical wind tunnel (Fig. 1C). Note that the resolution requirement for the bumblebee is larger than for the HIT simu-112

lations in all considered cases, as required by the detailed geometry of the bumblebee. In cases with larger integral scale, we113

compute four identical bumblebees in one simulation with doubled lateral domain size and the same resolution (Fig. 1D), for114

reasons explained below.115

Fig. 2 shows an example computation. Inside the inlet layer, the HIT field is frozen, i.e., not dynamically evolving. Further116

downstream the turbulent flow evolves dynamically, and decays similar to what is observed in grid turbulence. The imposed117

constant mean flow u∞ transports the turbulent/laminar interface, as illustrated in Fig. 2. It reaches the insect’s head at t/T = 0.95118

and its tail at t/T = 1.95. Thus all wing beats after the second one take place in turbulence and are used to compute the statistics.119

After t/T = 3.21, the periodic HIT field repeats, owing to the spatial periodicity of the precomputed field. For each statistical120

state of inflow turbulence, we compute a number of realizations NR to be able to perform ensemble averaging. All simulations121

are identical except for the turbulent inflow field. For more technical details, we refer to [18, suppl. mat.].122

B. Inflow turbulence123

Flying animals encounter a considerable variety of aerial perturbations while foraging, ranging from no perturbation in almost124

quiescent air when the weather is calm, to fully turbulent, with intermittent gusts and vortices generated by obstacles, such125

as flowers, trees or buildings. The type of perturbation also depends on behavioral patterns in animals. Bees, for example,126

forage on flowers and thus regularly perform landing maneuvers which force them to fly in the flower’s wake. Owing to this127
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Figure 1. Setup used in present work. (A) Numerical wind tunnel, with tethered or freely flying insect. Turbulent inflow is imposed in the
upstream gray area, a vorticity sponge in the downstream green area damps vortices and thus minimizes their upstream influence. The turbulent
inlet imposes a slice of an isotropic turbulence field (B), which has been pre-computed in a separate simulation. The turbulence field has been
upsampled (C) to match the resolution of the numerical wind tunnel and rescaled preserving dynamic similarity. The gray slice in (C) moves
through the periodic field u′(x,y,z) at constant speed u∞. In some simulations with larger integral scale Λ, four identical insects are computed
(D) in one simulation, as explained in section II B.

huge variability in turbulent perturbations, we first reduce the parameter space. Therefore we define a typical turbulent flow128

and choose homogeneous isotropic turbulence (HIT) for the upstream perturbations because it is the most widely used. It is129

also realized in experimental work, e.g., generated by a grid in a wind tunnel [11]. HIT is characterized by its turbulent kinetic130

energy E = 3u2
RMS/2, or equivalently the turbulence intensity Tu = uRMS/u∞, the Reynolds number Reλ = uRMSλ/ν , based on131

the Taylor-micro scale λ =
√

15νuRMS/ε , and the integral length scale132

Λ =
π

2u2
RMS

ˆ ∞

k>0
k−1E(k)dk .

Here, ν is the kinematic viscosity, ε the dissipation rate, k the wavenumber and E(k) is the energy spectrum integrated over133

wavenumber shells. Note that for spatially periodic velocity fields, the integral reduces to a sum, as only integer wavenumbers134

k ∈ N exist. We pre-compute the HIT velocity fields in a separate direct numerical simulation. In this computation, energy135

is injected at a given wavenumber k f to compensate for the loss due to viscous dissipation. Forced wavenumbers in the shell136

k f −0.5≤ |k| ≤ k f +2.5 are multiplied with a factor c(t) to keep the overall energy constant in time. This approach is known as137

negative viscosity forcing [30, 31]. In all HIT computations, we resolve the Kolmogorov scale η =
(
ν3/ε

)1/4, hence kmaxη & 1.138

We start the HIT simulations with a random initial condition with prescribed spectrum [52]. After the statistically steady state139

has been reached, we save velocity fields for later use as inflow perturbations. The saving interval is at least 10 eddy turnover140

times to assure that the fields are uncorrelated in time. By modifying k f at constant E and ν , we vary the spectral distribution of141

energy.142

We generate two series of HIT simulations with turbulent kinetic energy spectra shown in Fig. 3. In series A we vary the143

intensity Tu from mildly (Tu = 0.16) to extremely (Tu = 0.99) turbulent while keeping the integral length scale Λ = 0.77R fixed144

(Fig. 3 left). In series B where we fix Tu = 0.33 and vary Λ = {0.32R, 0.77R, 1.54R} (Fig. 3 right). Turbulence properties are145
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vorticity

spongeturbulent

inlet

t/T=0.4

400

20

Figure 2. Snapshot of a simulation. The virtual bumblebee is tethered in the virtual wind tunnel, the mean flow u∞ in x(g) direction compensates
for the cruising speed of the insect. Reference frames shown are the global (g) and body-fixed (b). The flow field is visualized by the vorticity
magnitude at an early instant (t = 0.4T ) before the laminar/turbulent interface reaches the insect. The parameters are Tu= 0.99 and Λ= 0.77R.

Series Tu Λ [R] λ [R] η [R] T0 [T ] Reλ kmaxη
NR

tethered free

A

0.16 0.77 0.25 0.013 3.67 90 1.72 4 3

0.33 0.77 0.18 0.008 0.19 129 1.07 5 16

0.60 0.76 0.13 0.005 0.98 177 0.99 9 9

0.99 0.76 0.11 0.004 0.62 227 0.94 27 6

B
0.33 1.54 0.26 0.01 3.62 186 1.32 10(a) –

0.33 0.77 0.18 0.008 1.91 129 1.07 5 16

0.33 0.32 0.11 0.006 0.77 82 1.70 5 15
(a) We computed two runs with four insects and an additional two runs with only one.

Table I. Properties of the homogeneous isotropic turbulence fields (time averaged over several eddy-turnover times) used as inflow perturbations
for the insect. The rightmost column shows the number of realizations NR used in tethered- and free flight simulations. Here, Tu is the
turbulence intensity, which is equivalent to the turbulent kinetic energy, Λ is the integral scale, λ is the Taylor microscale, η the Kolmogorov
scale and T0 is the eddy turnover time. All quantities are given in units of wing length R and wing beat duration T .

summarized in Table I. The first series allows us to evaluate the impact of turbulence intensity, while the second series allows146

us to investigate the influence of Λ on the insect. Note that the eddy turnover time T0 = Λ/u′RMS decreases, as expected, with147

increasing Tu (series A) and, likewise, with decreasing Λ (series B). We vary the energy distribution via the forcing wavenumber148

k f in the HIT simulation. Note that in the Λ = 0.77R case the forcing wavenumber was k f = 1, thus we cannot reduce it any149

further in order to increase Λ. Therefore, in order to increase Λ to 1.54R, we double the lateral domain size to Ly = Lz = 8R in150

the insect simulation, which then allows k f = 1 to result in a larger integral scale. With the larger domain, we then compute four151

identical insects in one simulation (Fig. 1D), to reduce the computational cost.152

Fig. 4 illustrates two individual HIT fields from the B series by showing the isosurface of vorticity |ω|= 4σ(ω), where σ is153

the corresponding standard deviation. The energy E of both fields is the same, but the integral scales are Λ = 1.54R and 0.32R,154

respectively. Visibly, the Λ = 0.32R case features smaller scale vortices which are more densely distributed in the periodic box.155
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Figure 3. Spectra of turbulent kinetic energy for HIT fields averaged over several eddy turnover times. Left: series A with constant Λ and
variable Tu, right: series B for Tu = 0.33 and Λ variable. Markers are the wavenumbers associated with Λ, λ and η (from left to right on each
spectrum).

Figure 4. Two HIT fields from the series B, both with identical turbulent kinetic energy (and hence turbulence intensity Tu). Visualized is the
isosurface |ω| = 4σ(ω) of vorticity magnitude, where σ is the standard deviation. Insets show visual comparison of wing length R, integral
scale Λ and Taylor micro scale λ .

C. Bumblebee model156

In our numerical simulations, we use a model bumblebee in forward flight at u∞ = 2.5m/s as archetype for medium-sized157

insects. The Reynolds number is Re = U tipcm/νair = 2060, where U tip = 2ΦR f = 8.05m/s is the mean wingtip velocity,158

cm = 4.012mm the mean chord length, νair = 1.568 ·10−5 m2/s is the kinematic viscosity of air, R = 1.32 ·10−2 m is the wing159

length, f = 152Hz (T = 1/ f = 6.6ms) is the wingbeat frequency (T is duration) and Φ = 115◦ is the wingbeat amplitude.160

The model is described in greater detail elsewhere [18, suppl. mat.]. The mass of the insect is m = 175 mg, the gravitational161

acceleration g = 9.81m/s2 and the moments of inertia of the body are J(b)roll = 1.14 · 10−9 kgm2, J(b)yaw = 4.33 · 10−9 kgm2 and162

J(b)pitch = 4.18 ·10−9 kgm2. We use the superscript ·(b) when referring to the body reference frame.163

We perform two types of simulations, one where the insect is anchored to the virtual wind tunnel (tethered flight) and one164

where its motion is computed from fluid forces and moments (free flight) as well as gravity. The governing equation for the165

free flight case is Newton’s second law of motion for linear and angular motion. For the latter, we use a quaternion Ansatz to166

avoid the Gimbal lock problem. Gimbal lock occurs when two rotation axis become parallel and the system looses one degree of167

freedom. The detailed set of 13 first-order ODEs can be found in [20]. In both free and tethered flight, we prescribe an identical168

wing motion relative to the body, as illustrated in Fig. 5. The wing motion is identical for all wing beats. The wings and body169
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are assumed to be rigid.170

Our bumblebee model responds in the free flight case, unlike real animals, entirely passively to perturbations. Therefore, we171

limit the simulation time to the order of magnitude of the reaction time delay τreact in those animals. After this delay, the insect172

may employ active steering mechanisms and modify the wing beat or body posture. Previous studies on freely flying honeybees173

reported response delays of approximately 20ms or 4.5 stroke cycles, suggesting the use of ocellar pathways for body stability174

reflexes in this species [58]. By contrast, recent work [2] suggests reaction times of about 5ms in fruit flies. The precise delay175

in bumblebees is unknown but expected to be of the same order of magnitude as in honeybees. Therefore, we simulate 8 stroke176

cycles (52.6ms) in a simulation, allowing thus to quantify the response for any τreact ≤ 8T . Notably, we do not exactly know177

under which conditions insects react at all to perturbations, or simply accept the externally imposed change in flight direction and178

orientation. An example for this is shown in [51], where bumblebees are found to ignore aerial perturbations when approaching179

a cylinder.180

t/T=0.0 t/T=0.1 t/T=0.2 t/T=0.3 t/T=0.4

t/T=0.9t/T=0.8t/T=0.7t/T=0.6t/T=0.5

Figure 5. Visualization of the bumblebees prescribed flapping motion every 0.1T time steps.

D. Governing equations and numerical method181

The present work relies on numerical simulations. We directly solve the incompressible Navier–Stokes equations without any182

a priori turbulence models. All scales of fluid motion are fully resolved in time and space. In this section, we describe briefly183

the numerical method we use, for reasons of self-consistency. For further details the reader is referred to [20].184

We employ a Fourier pseudospectral method for spatial discretization and a 2nd order Adams-Bashforth scheme for time185

advancement. The spectral discretization is fast and accurate [46] and is particularly useful in our case as the Laplace operator186

becomes diagonal in Fourier space. Hence, the solution of a Poisson problem is trivial in Fourier space. To include the no-slip187

boundary conditions on the time-varying geometry we use the volume penalization method [1]. This allows us to maintain the188

advantages of the Fourier discretization. Hence, we solve the penalized Navier–Stokes equation189

∂tu+ω×u =−∇Π+ν∇2u− χ

Cη

(u−us)

︸ ︷︷ ︸
penalization

− 1
Csp

∇×
(
χspω

)

∇2
︸ ︷︷ ︸

sponge

(1)

∇ ·u = 0 (2)
u(x, t = 0) = u0 (x) x ∈Ω, t > 0, (3)

where u is the fluid velocity, ω = ∇× u is the vorticity. We normalize the density ρ f to unity. The nonlinear term in eqn. (1)190

is written in the rotational form. Hence we are left with the gradient of the total pressure Π = p+ 1
2 u · u instead of the static191

pressure p [46]. This formulation is chosen because of its favorable properties when discretized with spectral methods, namely192

conservation of momentum and energy [46, pp. 210]. At the exterior of the computational domain, we assume periodic boundary193

conditions. The domain is sufficiently large to minimize the effect of periodicity.194

The mask function χ is defined as195

χ (x, t) =
{

0 if x ∈Ω f
1 if x ∈Ωs

, (4)

where Ω f is the fluid and Ωs the solid domain. Note that in the fluid domain Ω f , the original equations hold as the penalization196

term χ

Cη
(u−us) vanishes. The convergence proof in [1, 4] shows that the solution of the penalized Navier–Stokes equations197

(1-3) tends for Cη → 0 indeed towards the exact solution of Navier–Stokes imposing no-slip boundary conditions. Here, we use198
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Cη = 2.5 ·10−4. We also add a second penalization term for the vorticity ω , which we call sponge term. The sponge gradually199

damps the vorticity in regions where χsp = 1. The sponge constant is set to Csp = 10−1.200

In the case of free flight, we compute the position and orientation of the insect from the aerodynamic forces and moments201

using a quaternion-based formulation. We integrate the resulting ODE system time using the same Adams-Bashforth scheme as202

for the fluid. More details about the numerical method and its implementation in the open-source code FluSI [42] can be found203

in [20], along with detailed validation cases. In addition, appendix A shows the convergence of the forces for decreasing wing204

thickness of a flapping wing.205

III. RESULTS AND DISCUSSION206

In the following subsection, we present and discuss the results of two types of simulations, tethered and free flight. We use207

both cases to investigate the influence of turbulence on the insect when varying either the intensity or the length scales of the208

turbulent inflow perturbations. We start with the tethered cases, which serves as reference for the free flight cases. In numerical209

simulations, the tethered case is the idealized limit of perfect control. In experimental work, where the animals are fixed using a210

material tether, usually a thin wire glued to the back, the insects lack sensor feedback present in free flight. The wing kinematics211

might then be very different from what an insect uses in free flight [54]. However, note that our tethered simulations are based212

on wing kinematics measured in free flight [14, 15]. They are thus equivalent to a tethered insect that flaps as if it was in free213

flight.214
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Figure 6. Tethered flight in turbulence. The integral scale is Λ = 0.77R and Tu varies between 0 and 0.99. Cycle averaged values are
represented by box plots. Each of the NR simulations yields 4 data points, one for each cycle. In the colored boxes, the line is the median (or
2-quantile) of the data, and the limits of the box are the upper and lower quartiles (or 4-quantile). The additional vertical line are min/max
values excluding outliers, which are shown as individual points with a ♦ marker. Aerodynamic quantities are forces (A-C, normalized by
mg), moments (D-F, normalized by mgR) and aerodynamic power (G, in W/kg body mass). The dashed line corresponds to the laminar case
(Tu = 0) where the insect is aligned with the mean flow.
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A. Tethered flight215

1. Influence of turbulence intensity at fixed length scales216

We first study the influence of Tu at constant integral scale Λ. The insect is tethered and we used the series A of turbulence217

fields, as presented in [18]. Their properties are summarized in Table I. We fix the integral scale and vary the turbulence intensity218

Tu, which also results in an increasing Reynolds number Rλ and reduced eddy turnover time. Fig. 6 illustrates the obtained219

results for forces (A-C), moments (D-F) and aerodynamic power (G). We choose the box plot representation, first introduced220

in [57], to visualize the data. Each of the NR realizations yields Nw independent cycle-averaged forces and moments (Table I).221

The median value of the data are remarkably close to the value in the laminar case (dashed line) for all quantities, even in the222

strongest inflow turbulence. This indicates that turbulence does not systematically alter the vortex dynamics generated by the223

flapping wings of the insect. This vortex system features the leading edge vortex that results from the typically high angle of224

attack (here roughly 50◦) [16, 17, 33]. The leading edge vortex remains attached to the wing in unperturbed conditions, and in225

the simulations with turbulent inflow it is not systematically detaching neither. Owing to the decreased pressure in its core, this226

vortex provides a boost for the aerodynamic forces, especially the lift force. Thus, its detachment or destruction would result in227

a significant change in forces, moments and power. Compared to an airfoil, where upstream turbulence can trigger transitions228

in the boundary layer or impact flow separation, this behavior is thus different. However, fluctuations occur, as represented in229

Fig. 6 by the colored boxes and the min/max values. With increasing turbulence intensity, those fluctuations become larger. We230

conclude that flapping flight in turbulence faces insects more with a problem for control, rather than deteriorated force production231

[18].232

2. Influence of turbulent length scales at constant intensity233

With the results of [18] we now further explore the influence of turbulent length scales on tethered flight and use the series234

B from Table I, where we fixed Tu = 0.33. This particular intermediate value of Tu does not require a large number of flow235

realizations for any tested value of Λ, which allows keeping the computational cost within acceptable limits. Furthermore, field236

experiments [11] show a large flight activity of bumblebees for this value of Tu.237

Fig. 7 illustrates the cycle-averaged forces, moments and power as a function of Λ. The median values are close to the values238

in laminar inflow (dashed line), which is consistent with the findings in [18] and Fig. 6. For any quantity, fluctuations are239

significantly reduced at Λ = 0.32R (blue), compared to the other two cases. The lateral (Fig. 7B) and lift (Fig. 7C) force exhibit240

the largest fluctuations for Λ = 0.77R, while the fluctuations in thrust (Fig. 7A) are of the same magnitude in both cases. For241

the aerodynamic torques (Fig. 7D-F) largest fluctuations appear for Λ = 1.54R with standard deviation σ = 0.104, 0.095, 0.076242

for the roll (Mx), pitch (My) and yaw (Mz) moments, respectively. The yaw moment is slightly less sensitive to perturbations243

but remains of the same order of magnitude. The aerodynamic power Paero (Fig. 7G) displays the same behavior as the forces,244

with Λ = 0.77R resulting in the largest fluctuations. However, in that case, σ(Paero)/Paero = 0.05, while for the vertical force245

σ(Fz)/Fz = 0.2. The power thus fluctuates little.246

These results suggest a reduced sensitivity to turbulence at smaller scales, expressed in a reduction of more than a factor of247

two in the magnitude of fluctuations at the same turbulence intensity. This is in agreement with the conjecture stated in [50] that248

perturbations which are small compared to the animal average out over the body and thus induce less perturbations. To further249

explore the effect of Λ, we illustrate in Fig. 8A-B the flow for the coarsest and finest turbulent case. Vortical structures are250

visualized by the Q-criterion [29]. For both inflow conditions, we plot the same relative isosurface using the standard deviation251

σ , Q = 0.7σ(Q), to identify vortices. In the coarser turbulence, less vortex tubes can be identified in the region between the inlet252

and the insect than in the smaller scale case, and the tubes are of similar diameter. This may lead to the visual intuition that the253

smaller scale turbulence has a larger impact on the insect. However, the pressure field, illustrated in Fig. 8C-D as the difference254

in pressure between the turbulent and laminar realization, ∆p = pturb− plam, confirms that pressure fluctuations are of similar255

magnitude in both cases, while the spatial scale differs significantly. The coarser scale turbulence is associated with much larger256

scales of the pressure variations, which therefore have less chance of canceling out over the region of the insect.257

B. Free flight258

We now consider our model in free flight with all six degrees of freedom coupled to the flow solver, neglecting active control.259

This configuration is more realistic for real insects, since they cannot react instantaneously to changes in the flow condition.260

Reaction rather takes place after a time delay τreact, during which sensor information are converted to changes in wing beat261

for active countermeasures (see section II C). Therefore, the insect behaves passively during this interval, similar to what our262

model does. The orientation and linear/angular velocities after τreact can thus yield insight into the effort required for corrective263

maneuvers.264
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Figure 7. Tethered flight in turbulence. The turbulence intensity is Tu = 0.33 and the integral scale Λ varies between 0.32R and 1.54R. Cycle
averaged values are represented by box plots. Each of the NR simulations yields 4 data points, one for each cycle. In the colored boxes, the line
is the median of the data, and the limits of the box are the upper and lower quartiles. The additional vertical line are min/max values excluding
outliers, which are shown as individual points with a ♦ marker. Aerodynamic quantities are forces (A-C, normalized by mg), moments (D-F,
normalized by mgR) and aerodynamic power (G, in W/kg body mass). The dashed line corresponds to the laminar case (Tu = 0) where the
insect is aligned with the mean flow.

1. Influence of turbulence intensity at constant length scales265

After revisiting the problem of a tethered bumblebee in turbulence and studying the same model in free flight and laminar266

inflow, we now turn to free flight in turbulence. We first keep Λ = 0.77R fixed for these simulations and alter the energy content267

of the imposed velocity fluctuations (series A in Table I). In free flight, force and moment fluctuations are transduced to linear268

and angular velocities, which in turn alter the forces and moments. It can be seen as the limiting case of no flight control,269

while tethered flight can somehow be seen as limit of perfect control using external force, in the sense that attitude is perfectly270

stabilized while neglecting the necessary changes in wing beat.271

Fig. 9A-D shows the magnitude of the body’s angular velocity, Ω(b)
b , as a function of time for the four different turbulence272

intensities Tu = 0.16, 0.33, 0.60 and 0.99. At the lowest turbulence intensity (Fig. 9A), fluctuations remain small and the overall273

time evolution resembles the laminar case, in which only the pitch component of Ω(b)
b is nonzero owing to lateral symmetry,274

although the difference grows in time. The first stroke is virtually unaffected as perturbations have not yet been advected to the275

insect. From the next larger value of Tu on (Fig. 9B), the resemblance to the laminar case disappears. The terminal value of276

the ensemble averaged angular velocity increases from 829◦/s at Tu = 0.33 (Fig. 9B) to 2300◦/s at Tu = 0.99 (Fig. 9D). In the277

laminar case, peak values of 470◦/s are found. It can be seen that after an initial growth phase, which takes place roughly in the278

first two strokes, the average angular velocity remains roughly constant, thus it is limited by aerodynamic damping.279

Fig. 10 shows the components of the angular velocity vector, averaged over the last cycle 7 ≤ t/T ≤ 8, as a function of280

the turbulence intensity. The magnitude of the mean value as well as fluctuations increase with increasing Tu, but no relevant281

difference among the three directions can be observed. We thus do not observe a significantly increased roll angular velocity282

(Fig. 10C), despite the lower moment of inertia around this axis.283
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Figure 8. Tethered flight in turbulence. Left column: Tu = .33 and Λ = 1.54R, right column: Tu = .33 and Λ = 0.32R. (A-B) An isosurface
of the Q-criterion is shown to visualize vortical structures. In the case of Λ = 1.54R (A), fewer vortices are identified upstream of the insect.
(C-D) show the corresponding pressure field, where the pressure from the laminar inflow has been subtracted, ∆p = pturb− plam. Compared
to the Λ = 0.32R case (D), variations in pressure are of the same order of magnitude but on a larger spatial scale in the Λ = 1.54R case (C).

We find the largest magnitude of linear velocity
∣∣∣u(b)b

∣∣∣/u∞ = 0.06± 0.04 for the highest turbulence intensity (Tu = 0.99,284

Λ = 0.77R). It can be concluded that, even for the largest turbulence intensity, the translational response of the bumblebee is285

small compared to the flight speed. Therefore, the changes in position xcntr are small within the time span of the computations,286

i.e. 8T . The impact of turbulence on the angular degrees of freedom is thus much higher than on the linear ones.287

2. Influence of turbulent length scales at constant intensity288

As for the tethered case, we fix Tu = 0.33 and vary the integral scale Λ of the turbulent inflow perturbations. Fig. 11 shows289

the angular velocity components for the case Tu = 0.33, Λ = 0.77R (A–C) and Λ = 0.32R (D–F). Each realization is shown290

as a thin gray line, the reference computation in laminar flow is shown as red dashed line. All realizations result in a different291

attitude of the insect, though the turbulence fields have identical statistical properties. The ensemble-averaged time evolution292

(solid green lines) is however remarkably close to what is seen in laminar inflow. Standard deviations among the realizations293

(green shaded area) increase with time, as turbulent inflow perturbations are imposed continuously.294
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Figure 9. Free flight in turbulent inflow, Tu = 0.16 (A), 0.33 (B), 0.60 (C) and 0.99 (D), for fixed Λ = 0.77. Time evolution for the magnitude
of body angular velocity. Individual realizations are shown as thin, gray, dashed lines. Ensemble averaged time evolution is represented by the
thick green line, light green shaded background illustrates the standard deviation. The red dashed line corresponds to the laminar case.

Ensemble averaged angular orientation, expressed in term of the body angles, does not change significantly for ψroll and ψyaw,295

while βpitch has changed by 8.5◦. Fluctuations are largest for yaw (15.4◦), followed by pitch (11.0◦) and roll (10.3◦). The values296

are however close to each other, such that the difference is not significant.297

For all components, the standard deviation of the angular velocity Ω(b)
b first grows in time, until some saturation is reached.298

The initial growth rate is largest for the roll component (Fig. 11A), which presents large fluctuations at t = 2T already. By299

this time, the pitch component (B) has almost vanishing fluctuations and those in yaw (C) are significantly smaller. The insects300

motion is damped by the viscous fluid, and thus the magnitude of the angular velocity remains bounded.301

Fig. 11D–F show the same quantities as Fig. 11A–C for the case Λ = 0.32R. While the qualitative behavior is similar,302

the magnitude of both changes in angular orientation and angular velocities of the body (Ω(b)
b ) are significantly reduced. For303

example, γyaw = 20◦ in the Λ = 0.77R case is reduced to 2.5◦. The fluctuations in roll angular velocity grow fastest.304

From the direct comparison of the two cases we can confirm the conclusions from the tethered simulations also in the free flight305

case. The reduced integral scale significantly reduces the impact of the flow on the insect’s attitude. Fig. 12 shows the magnitude306

of the different components of the angular velocity and confirms that conclusion. Furthermore, as the 95% confidence intervals307

of the different directions overlap for both values of Λ, again no direction with statistically significantly increased magnitude can308
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Figure 10. Free flight in turbulent inflow. Shown are the yaw (A), pitch (B) and roll (C) components of the body angular velocity, averaged
over the last computed cycle, as a function of the turbulence intensity. Data are represented by a box plot. In the colored boxes, the line is
the median of the data, and the limits of the box is the upper and lower quartiles. The additional vertical line correspond to min/max values
excluding outliers (♦).

be observed. It appears thus from Fig. 11 that while the roll angular velocity grows fastest, its terminal value is not significantly309

larger than the other two components, yaw and pitch.310

A key advantage of numerical work is that we can exclude any voluntary motion that might be used, e.g., for distance esti-311

mation [51]. However, at this point, we cannot give a quantitative estimate for the limit of stable flight in turbulent conditions.312

The first uncertainty concerns the degree of desired control. Experimental work [51] suggests that bumblebees passively ride313

out small scale perturbations and actively impose a long wavelength casting motion. It thus seems that real animals are some-314

what behaving between the two limiting cases of tethered and free flight. This can also result from energetic considerations as315

allowing for a certain amount of deviations may reduce overall energetic cost.316

The role of the reaction time delay appears to be the second crucial factor for evaluating the stability. Our free flight data317

shows that fluctuations in angular velocity grow fastest for the roll axis, which is a consequence of the reduced moment of318

inertia. Figs. 11A and C show that the roll component has reached its saturation at about t = 2T . Beyond this time, damping319

inhibits further growth, possibly via the flapping counter torque (FCT) mechanism [25, 26]. This does not imply any bound for320

changes in body angles, which continuously grow in time. However, without the damping, the angular velocities are expected to321

grow continuously, leading to much greater changes in orientation.322

Experimental work [58] showed that honeybees (Apis mellifera) use angular velocities for roll, pitch and yaw of 3090, 697, 1874 ◦/s,323

respectively, during the active recovery phase after being perturbed with a strong wind gust. The magnitude of this angular veloc-324

ity is 3680◦/s, which is higher than the largest value we find in our simulations (Fig. 9), and also higher than the 2060◦/s which325

[58] reports during the passive phase directly after the perturbation. The associated reaction time is stated as 3.5T < τreact < 6T .326

Besides differences in species (we are not aware of data available for bumblebees in the literature), the study cannot directly be327

used to define a threshold for the angular velocity beyond which the animals cannot recover. In addition, flying in turbulence328

imposes continuous perturbations, while [58] studied the effect of a singular gust.329

IV. CONCLUSIONS AND PERSPECTIVES330

We numerically studied the impact of turbulence on a model insect, using high-resolution numerical simulations on massively331

parallel machines. Both tethered and free flight without control have been considered, using a bumblebee model with rigid wings332

and prescribed wing beat kinematics. The inflow condition ranged from laminar to turbulent, and in the latter we varied the333

turbulence intensity as well as the spectral distribution of the turbulent kinetic energy. For the turbulent inflows, we performed334

ensemble-averaging to obtain statistical estimates of forces, moments and power in tethered case and body orientation and335

velocities in the free flight case.336

In tethered flight, we have statistically estimated that the turbulent inflow does not induce the detachment of the leading edge337

vortex. This is true even in the strongest turbulence case and has already been shown in our previous work [18]. In addition to338

the turbulence intensity, here we found the spectral distribution of turbulent kinetic energy to be a significant parameter to be339

taken into account. If the integral scale of the inflow is smaller than the wing length, we found that statistically perturbations340

are reduced for forces, moments and power, compared to turbulent inflow with larger integral scale. We have demonstrated that341

the pressure field of the turbulent perturbations is associated likewise with large scale variations if the integral scale is large.342

The positive and negative pressure perturbations have thus less chance of canceling out over the body, which induces larger343

fluctuations.344
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Figure 11. Free flight in turbulent inflow, Tu = 0.33, A–C: Λ = 0.77R, D–F: Λ = 0.32R. Time evolution of the three components of the
angular velocity vector of the body, in the body system Ω(b)

b . Angular velocities are given in ◦/s for easier comparison with results in the
literature. Individual realizations are shown as thin gray lines. Ensemble averaged time evolution is represented by the thick green line, light
green shaded background illustrates the standard deviation. The thick red dashed line corresponds to the laminar case.

Using free flight simulations we first checked that our model remains stable for laminar inflow condition. In turbulent inflow,345

we confirmed the finding from the tethered flight. We found that changes in body orientation and angular velocity are highly sen-346

sitive to variations in the turbulence spectrum. For constant turbulence intensity, a smaller integral scale results in much smaller347

angular velocities and changes in orientation. By modifying the turbulence intensity at fixed integral scale, we showed how the348

angular velocities increase when the perturbations become stronger. In all free flight simulations, we found the translation of the349

insect to be small compared to its rotational motion.350

Collectively, our findings suggest that the scales of turbulent motion have a significant effect on the aerodynamics of flapping351

flight and should hence be considered in future contributions on this topic.352

In perspective, we plan to overcome the limitations of the current study and specifically include the effects of both wing353

flexibility and flight control. Moreover, since our results have been obtained using a single species, namely a bumblebee, the354
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computed cycle, as a function of Λ. Data are represented by a box plot. In the colored boxes, the line is the median of the data, and the limits
of the box is the upper and lower quartiles. The additional vertical line is min/max values excluding outliers (♦).

generalization to other insects is another important direction for future work. Finally, we aim to replace the homogeneous355

isotropic turbulence, which is a valuable starting point, by generic turbulent flows even more relevant to insects, e.g., flower356

wakes.357
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I. APPENDIX: CONVERGENCE TO AN INFINITESIMALLY THIN FLAPPING WING367

In this appendix, we study the convergence of our numerical scheme in the limit of infinitesimally thin wings. We choose the368

same wing geometry as in the rest of the article, with the same kinematics, but simulate only one wing without the insects body.369

The domain size is reduced to 2×2×2 in order to be able to reach high resolutions. The thickness of the wing is hw/R = ct∆x370

where we set the constant Ct = 4. As no reference solution is available, we instead use the solution on the finest grid. As371

described in [20], the penalization parameter Cη = (Kη ∆x)2/ν is reduced with increasing resolution, in order to achieve optimal372

results. The constant is Kη = 7.4 · 10−2. We perform five simulations with resolution 1923, 3843, 5123, 7683 and 10243, with373

hw/R ranging from 4.2% to 0.78%. The error is evaluated as374

ε =

ˆ 2T

0
(Fi−Fref,i)dt/

ˆ 2T

0
Fref,idt.

Fig. 13 shows the resulting convergence. For all components, we find qualitatively the same behavior and an order of about 1.5.375

We can hence conclude that the penalization method retains its accuracy also in the limit of thin flapping wings.376
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