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A Approximation for first order derivatives

In the present work, we use the optimized fourth order scheme proposed by Tam and
Webb [6] for first derivatives. It is built on the idea of combining a fourth- and a sixth
order approximation using standard finite differences, yielding
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where a(4th)
j and a(6th)

j are classical, central finite differences. The combination pro-
vides a degree of freedom γ, which is then used to optimize the modified wavenumber.
The resulting stencil is

a(TW)
j =−a(TW)

−j ={−0.02651995,0.18941314,−0.79926643,0}, (−3≤ j≤0).

B Design of the computational grid

The design of our adaptive grid is tailored to the requirements of biorthogonal wavelets
(nestedness) and designed with the idea of keeping the numerical code as simple as pos-
sible. We therefore use blocks of equal size BD

s , as explained in the main text. Still, the
precise definition of the grid is not unique using these requirements, which is why we
justify our choices in detail in this appendix.

Figure 1A illustrates the two possibilities to define a block, where type A blocks in-
clude all borders and type B only half of them. Consequently, using type A, two adjacent
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Figure 1: A: Two possible block definitions using the same block size Bs. Type A includes all of the block
borders, which are then redundant with the neighboring block, while type B assigns each block border to one
block. Present work uses type A grids exclusively. B-D: Different grid definitions for a coarse (open circles)
and fine block (full circles). Ghost nodes are not shown. B: spacing between the blocks corresponds to fine
block spacing on both sides. C: same as B, but using coarse block spacing. D: mixed interblock spacing E:
eigenvalues of discrete first derivative (a Toeplitz matrix) for grids B-D in the complex plane.

blocks sharing a common interface both contain redundant points, which is not the case
using blocks of type B. At first it may thus seem that the latter are preferable.

Different discretizations of the block interface with a jump in resolution are shown
in Fig. 1B-D. The spacing between the block is equal to the fine (B) and coarse (C) block
spacing, and symmetrical on both sides. In D, both are mixed. The eigenvalues of the
discrete finite difference operator for the first derivative are shown in E. Clearly, grids
B,C result in purely imaginary eigenvalues, while grid D also has non-zero real parts.
While these are negative in the example shown, it depends on the local flow direction
if the solution is excited or attenuated. From these eigenvalues, we hence conclude that
grid D is unstable without an additional stabilization (e.g., filtering). We immediately
note that grid D corresponds to a block-based grid using type B blocks, which is why we
do not use this definition.

Blocks of type A allow stable discretizations shown in B,C, provided we attribute the
border of a blocks consistently to either the fine or coarse block. This final decision was
made based on the observation that using CDF 4/4 wavelets, spurious oscillations are
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generated at resolution jumps if the interface is attributed to the fine block. These artifacts
disappear if the interface is counted to the coarse block (grid C in Fig. 1). However,
strictly speaking this grid definition is incompatible with the requirement for blocks of
equal size. On the finer block, we therefore simply overwrite the solution with the coarse-
block data at their common interface. This is done when synchronizing the ghost node
layer.

C CDF Wavelets

For completeness, the filter coefficients for the biorthogonal wavelets used in this work
(CDF 4/0 and CDF 4/4) are given in Table 1. The resulting scaling functions φ, wavelets
ψ and dual functions φ̃, ψ̃, are illustrated in Fig. 2.

CDF4/0 CDF4/4

i h̃ g̃ h g h̃ g̃ h g

-7 −1/256

-6 −1/256 0

-5 0 9/128

-4 9/128 1/16

-3 −1/16 −1/16 −1/16 −63/256

-2 1/16 0 −63/256 1/16 0 −9/16

-1 0 9/16 9/16 0 9/16 87/64

0 1 −9/16 1 87/64 −9/16 1 −9/16

1 1 9/16 1 9/16 1 9/16 −63/256

2 −9/16 0 −63/256 −9/16 0 1/16

3 0 −1/16 −1/16 0 −1/16 9/128

4 1/16 9/128 1/16 0

5 0 −1/256

6 −1/256

Table 1: Filter coefficients for the CDF4/0 and CDF4/4 interpolating biorthogonal wavelets.
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Figure 2: Scaling functions φ, wavelets ψ and dual functions φ̃, ψ̃ for the CDF 4/0 (left, black) and CDF 4/4
wavelets (right, green).

D Non-reflecting boundary conditions using sponges

At the outflow boundary of the computational domain, we impose non-reflecting bound-
ary conditions using a sponge technique. The outflow removes two physically distinct
phenomena: on the one hand, vortical structures not yet dissipated, and artificial sound
waves on the other. The artificial sound waves transport flow divergence created at the
fluid–solid interface and due to the nonlinear term. It is possible to implement such con-
ditions based on characteristics, but for simplicity and consistency with the treatment of
the obstacles, we use the volume penalization method to include non-reflecting sponges.
We can conveniently discuss the choice of parameters for sponges using a simple, one-
dimensional model. In the acoustic regime, we can neglect the nonlinear and diffusion
terms, and we also remove the obstacle penalization term, yielding

∂tu = −∂x p− χsp

Csp
u

∂t p = −∂xu− χsp

Csp
p,
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Figure 3: Left: ‘Hard’ and ‘soft’ χsp functions, here with Lsp = 0.2. The red function is cos-shaped. Right:
sponge error, computed as L2 norm of residual velocity at t=T. Because the exact solution at is zero, we use
‖u(t=0)‖2 as normalization.

where we further normalize C0=1 without loss of generality. The reference state is u∞ =
p∞ =0. We consider a periodic domain of length L and the initial condition

u(x,t=0)=exp(−(x−L/2)2/σ2)

p(x,t=0)=0.

This initial condition results in two artificial sound waves with characteristic size σ trav-
eling either left or right. The waves do not decay in a 1D setting, unlike in higher dimen-
sions, making the 1D problem the most sensitive to non-reflecting boundary conditions.
In 3D, the waves decay as R−2, where R is the distance to the source. Provided a suf-
ficiently large domain, pseudoacoustic waves thus are already significantly weakened
when reaching the sponge layer.

The size of the sponge layer should be larger than the waves it is supposed to absorb –
the important ratio is thus Lsp/σ. The second relevant parameter is the time spent in the
sponge layer, relative to the relaxation time Csp. We call this parameter τ= Lsp/(C0Csp).
The third relevant parameter is the shape χsp of the sponge layer, for which we can use
either a discontinuous (hard) or smoothed (soft) function, as shown in Fig. 3 (left).

Depending of the choice of parameters, one of two things can happen: the damping
is too weak, and the wave is not completely removed from the domain (it re-enters on
the opposite side). The damping can also be too strong, in which case the sponge term
deteriorates the regularity of the solution and spurious reflections occur.

We run the simulations until T=3L/4; the artificial wave reaches the sponge around
T0 = (L−Lsp)/2. The exact solution at t = T is u = p = 0. Figure 3 (right) shows the
normalized residual velocity at the final time T for hard and soft mask function and
different Lsp/σ, as a function of τ. The curves coincide for small τ, which indicates that
Lsp/σ and τ are indeed the relevant parameters. Thicker sponges allow setting larger
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values of τ, which reduces reflections. However, a significant improvement of the soft
mask function over the discontinuous one is observed, and almost perfect cancellation
of waves is observed for the largest Lsp/σ. From this data, we conclude that Lsp/σ> 5
and τ > 10 minimize reflections. Sponges are usually set much larger than Lsp/σ = 5,
because of vortical structures. We recommend setting τ=20 in the main text. Note that
in practice, simulations are performed in 3D and the sensitivity to the sponge is then
significantly reduced.

E Description of parameter files required to reproduce simula-
tions

This section summarizes and briefly explains the content of the electronic supplemen-
tary material (ESM). The intention of the ESM is to ensure reproducibility of all results
presented in the main text.

General remarks on running the code

The WABBIT code is started from a jobfile specific to the supercomputer. The general call to
the code is MPI_COMMAND ./wabbit PARAMETERS.ini –memory=250.0gb. The parameter
file might refer to other parameter files (for example for the wingbeat kinematics or the
fractal tree).

Three-vortices simulations

Files required to run a simulation:

• Main parameter file: PARAMS-three-vortices.ini

• Initial condition:
ux_000000000000.h5, uy_000000000000.h5, p_000000000000.h5

As we present a total of 160 simulations for this problem, we decided to not include
all required parameter files. The ESM rather contains a single simulation with CDF 4/4
wavelets, Jmax=5, C0=10 and Cε =2.6827·10−4

Flapping wing simulations: Suzuki test case

Files required to run a simulation:

• Main parameter file: PARAMS_suzuki_jmax5.ini
(or *_jmax6.ini, *_jmax7.ini)

Each of the coarse, medium and fine resolution simulation is included in the ESM.
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Bumblebee simulations

Files required to run a simulation:

• Main parameter file: PARAMS_bumblebee_jmax*.ini

• Wingbeat kinematics file: bumblebee_new_kinematics.ini

Each of the coarse, medium and fine resolution simulation is included in the ESM.

Bumblebee and fractal tree

Files required to run the simulation:

• Main parameter file: PARAMS_bumblebee_fractaltree.ini

• Wingbeat kinematics file: bumblebee_new_kinematics.ini

• Text file describing the cylinders in the fractal tree: tree_SPH_branch2.in

F Impulsively started cylinder

In this appendix, we consider an impulsively started cylinder at Re = Du∞/ν = 3000
and compare with [2–4]. The volume penalization method is used to approximate the
Dirichlet boundary condition, and the simulation is two-dimensional. A significant im-
provement with respect to spectral simulations is that the adaptive framework allows for
setting very large domains (for the cylinder simulations, we use here L= 160), because
the strongest refinement is located near the cylinder. The flow is impulsively started, i.e.,
the initial velocity is u(x,t= 0)= u∞ , where u∞ =(1,0)T, and p(x,0)= 0. Four levels of
resolution are performed, with their key parameters summarized in Fig. 4A. Because of
the large computational domain, the coarsest simulation already uses Jmax=12 scales.

Figure 4C shows the vorticity field at the final time t=3.0 for the lowest and highest
Jmax. The vorticity is visually very similar to results presented in the literature [2–4], and
the two simulations show only little differences. Two main vortices are visible behind the
cylinder, and secondary and tertiary vorticity lead to a dipole-like flow pattern near the
separation point [4].

The drag force is shown in Fig. 4D together with the reference data and an incom-
pressible spectral simulation with penalization [1] (using L = 20, 16384×16384 modes,
Kη =0.1). During the impulsive startup phase, present results obtained with ACM differ
as expected significantly from the reference solutions. While the force is very large in the
beginning, it later decreases and even becomes negative. After some time, depending
on C0, the drag however approaches the reference curves. In our applications to insect
flight, impulsive start is used because of the lack of suitable initial conditions, rather than
an interest in the short-time behavior of the solution. If one is interested in this transient
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behavior, the initial speed of sound C0 should be very large and can be decreased after
some time. Another possibility is to follow Ohwada [5] and carefully derive appropriate
initial conditions. For our focus on flapping flight, this is not required.

As discussed, the impulsive start results in pressure waves propagating in the do-
main, and they can contribute significantly to the number of blocks used in the simu-
lation. The pattern is similar in all simulations: the initial wave entails an increasing
Nb, until the wave is absorbed by the sponge (Fig. 4B). Then, the grid density rapidly
decreases and then remains practically constant. In all cases, less than 0.1% of the corre-
sponding full grid is used at most, which is also related to the large domain size. Note
that pressure waves decay much faster in 3D than in 2D, as explained in the main text.
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Figure 4: Impulsively started cylinder at Re=3000. A: computational parameters for the four levels of resolution.
B: mask function χsp for the sponge. The actual cylinder is not visible due to the large domain size. C: vorticity
field with the block-based grid superimposed in the lower half, results from the level 1 and 4 computations,
respectively. D: drag force as a function of time, compared with results from the literature. All results are
obtained with CDF 4/0 wavelets.


