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Abstract

English abstract

Flying and swimming animals have developed efficient ways to produce the
fluid flow that generates the desired forces for their locomotion. These bio-
inspired problems couple fluid dynamics and solid mechanics with complex
geometries and kinematics. The present thesis is placed in this interdisci-
plinary context and uses numerical simulations to study these fluid–structure
interaction problems with applications in insect flight and swimming fish.
Based on existing work on rigid moving obstacles, using an efficient Fourier
discretization, a numerical method has been developed, which allows the sim-
ulation of flexible, deforming obstacles as well, and provides enhanced ver-
satility and accuracy in the case of rigid obstacles. The method relies on the
volume penalization method and the fluid discretization is still based on a
Fourier discretization. The code, designed to run on massively parallel super-
computers, is entirely open source and freely available on the internet. We
first apply this method to insects with rigid wings, where the body and other
details, such as the legs and antennae, can be included. After presenting de-
tailed validation tests, we proceed to studying a bumblebee model in fully
developed turbulent flow. Our simulations show that turbulent perturbations
affect flapping insects in a different way than human-designed fixed-wing air-
crafts. While in the latter, upstream perturbations can cause transitions in the
boundary layer, the former do not present systematical changes in aerody-
namic forces. We conclude that insects rather face control problems in a tur-
bulent environment than a deterioration in force production. In the next step,
we design a solid model, based on a one–dimensional beam equation, and
simulate coupled fluid–solid systems. Applications deal, in a two-dimensional
setup, with insect flight, but also with simplified three–dimensional models
for swimming fish. In these ’swimmers’, consisting of a flexible plate with one
rigid direction, we study the influence of the shape on the hydrodynamic ef-
ficiency. A contracting shape, as found in some amphibians, is found to swim
faster and require less power than an expanding shape, which is more similar



to most caudal fins observed in fish. We present evidence that this finding can
be explained by a favorable interaction with the tip-vortices in the case of the
contracting shape.

Résumé français

Les animaux volants et flottants ont développé des façons efficaces de pro-
duire l’écoulement de fluide qui génère les forces désirées pour leur locomo-
tion. Ces problèmes “bio-inspirés” couplent la dynamique des fluides avec la
mécanique des solides, y compris des géométries et cinématiques complexes.
Cette thèse est placée dans ce contexte interdisciplinaire et utilise des simula-
tions numériques pour étudier ces problèmes d’interaction fluides-structure,
et les applique au vol des insectes et à la nage des poissons. Basée sur les tra-
vaux existants sur les obstacles mobiles rigides, utilisant une discrétisation de
Fourier efficace, une méthode numérique a été développée, permettant égale-
ment la simulation des obstacles déformables et fournissant une polyvalence
et précision accrues dans le cas des obstacles rigides. L’algorithme se repose
sur la méthode de pénalisation volumique et la discrétisation fluide est tou-
jours basée sur une discrétisation de Fourier. Le code, conçu pour fonction-
ner sur des supercalculateurs massivement parallèles, est entièrement open
source et disponible librement sur internet. Nous appliquons cette méthode
d’abord aux insectes avec des ailes rigides, où le corps et d’autres détails,
tels que les pattes et les antennes, peuvent être inclus. Après la présenta-
tion de tests de validation détaillée, nous procédons à l’étude d’un modèle de
bourdon dans un écoulement turbulent pleinement développé. Nos simula-
tions montrent que les perturbations turbulentes affectent les insectes volants
d’une manière différente de celle des avions aux ailes fixées et conçues par
l’humain. Dans le cas de ces derniers, des perturbations en amont peuvent dé-
clencher des transitions dans la couche limite, tandis que les premiers ne pré-
sentent pas de changements systématiques dans les forces aérodynamiques.
Nous concluons que les insectes se trouvent plutôt confrontés à des problèmes
de contrôle dans un environnement turbulent qu’à une détérioration de la
production de force. Lors de l‘étape suivante, nous concevons un modèle so-
lide, basé sur une équation de barre monodimensionnelle, et nous passons à la
simulation des systèmes couplés fluide–structure. Les applications concernent
d’abord des configurations en deux dimensions spatiales, spécifiques au vol
de l’insecte, mais aussi des modèles tridimensionnels représentant la nage
des poissons. Avec ces ’nageurs’, constitués d’une plaque flexible avec une
direction rigide, nous étudions l’influence de la forme sur l’efficacité hydrody-
namique. Nous concluons qu’une forme contractée, c’est-à-dire une silhouette
élargie à la tête et qui s’affine à la queue, que l’on trouve dans certains am-
phibiens, est plus efficace et permet une nage plus rapide qu’une forme expo-
nentielle, qui est pourtant plus similaire à la plupart des nageoires caudales



observées chez les poissons. Nous présentons des preuves que cet effet peut
être expliqué par une interaction favorable des vortex de bord avec la plaque
dans le cas de la forme contractée.

Zusammenfassung auf Deutsch

Fliegende und Schwimmende Tiere haben im Laufe ihrer Evolution effiziente
Wege gefunden, die Strömung zu erzeugen die die gewünschten Kräfte für ih-
re Fortbewegung produziert. Diese biologisch inspirierten Probleme koppeln
Fluiddynamik mit Festkörpermechanik und komplexer Geometrie und Kine-
matik. Die vorliegende Arbeit ist in diesem interdisziplinären Kontext platziert
und verwendet numerische Simulationen, um solche Fluid–Struktur Wechsel-
wirkungsprobleme zu studieren, und sie auf den Insektenflug und schwim-
mende Fische anzuwenden. Basierend auf vorhergehenden Arbeiten zu star-
ren, sich bewegenden Hindernissen, basierend auf einer effizienten Fourier
Diskretisierung, wurde eine numerische Methode entwickelt, die die Simula-
tion von flexiblen, verformbaren Hindernissen ermöglicht, und im Fall starrer
Körper eine verbesserte Vielseitigkeit und Genauigkeit bietet. Das Verfahren
beruht auf der “Volume Penalization Method”1 und die Diskretisierung des
Fluides ist immer noch auf einer Fourier Diskretisierung basiert. Der Code,
ausgelegt für massiv parallele Supercomputer, ist komplett quelloffen und im
Internet frei verfügbar. Zunächst wenden wir diese Methode auf Insekten mit
starren Flügeln an, wobei der Körper und andere Details, wie die Beine und
Fühler, mit einbezogen werden können. Anschließend an detaillierte Validie-
rungstests gehen wir zum Studium einer Modellhummel in voll entwickelter
turbulenter Strömung über. Unsere Simulationen zeigen, dass turbulente Stö-
rungen flatternde Insekten in einer fundamental anderen Weise als menschen-
gemachte Starrflügler beeinflussen können. Während in letzteren stromauf-
wärts eingebrachte Störungen Transitionen in der Grenzschicht verursachen
können, zeigen erstere keine signifikanten und systematischen Änderungen in
ihren aerodynamischen Kräften. Wir schließen daraus, dass Insekten in tur-
bulenten Strömungen eher mit erhöhten Kontrollanforderungen konfrontiert
werden als mit einer Beeinträchtigung in der Produktion ihrer Auftriebskräf-
te. Im nächsten Schritt entwickeln wir ein mechanisches Modell, basierend
auf einer eindimensionalen Balkengleichung für große Verformungen, und
Simulieren gekoppelte Fluid-Struktur Systeme. Anwendungen behandeln, in
zweidimensionalen Konfigurationen, Modelle für den Insektenflug, aber auch
dreidimensionale Modelle von schwimmenden Fischen. Bei diesen "Schwim-
mern", bestehend aus einer flexiblen Platte mit einer starren Richtung, un-
tersuchen wir den Einfluss der Form auf der hydrodynamischen Effizienz. Wir
finden dass eine kontrahierende Form, wie sie in einigen Amphibien gefunden

1Etwa: Methode der Volumen-basierten Strafterme



wird, schneller schwimmt und weniger Energie benötigt als eine expandieren-
de Form, die mehr Ähnlichkeit mit den in den meisten Fischen beobachteten
Schwanzflossen hat. Wir präsentieren Hinweise, dass dieser Umstand durch
eine günstige Wechselwirkung der Kantenwirbel mit der Struktur im Falle der
kontrahierenden Form erklärt werden kann.



Version abrégée en français

Cette thèse traite la modélisation numérique des problèmes d’interaction fluide-
structure, ainsi que leur simulation sur les supercalculateurs à grande échelle.
Les applications traitent des problèmes inspirés par la nature, et plus particu-
lièrement par les insectes volants.

Ces animaux ont développé des mécanismes de vol efficaces qui sont très
différents de ceux utilisés par les avions conçus par les humains. Les insectes
battent leurs ailes tandis que les avions utilisent des ailes fixes.

Les ailes sont généralement flexibles, ce qui signifie qu’elles peuvent se défor-
mer lors de leurs mouvements. Par ailleurs la flexibilité est une caractéristique
commune dans la nature. Les ailes d’insectes peuvent se plier et se tordre, les
poissons sont flexibles et les plantes peuvent se plier avec le vent.

Par conséquent, la modélisation de ces problèmes d’interaction fluide-structure
est essentielle pour mieux comprendre la nature.

Cette thèse est organisé en trois parties. La première partie traite de la mé-
thode numérique de base, commune aux deux parties suivantes. La deuxième
partie applique cette méthode à des problèmes avec des objets rigides, notam-
ment des insectes avec des ailes rigides. La troisième partie étend la méthode
à des obstacles flexibles, et nous l’appliquons à des problèmes pertinents pour
les poissons qui nagent.

Partie I : Introduction et méthode numérique de base

Pour la simulation numérique des problèmes d’interaction fluide-structure,
différentes méthodes existent.

Les méthodes classiques utilisent des maillages conformes qui sont alignés
avec l’obstacle. Le maillage peut être structuré ou non structuré. Ces méthodes
ont en général une bonne précision sur la surface. Cependant, ils nécessitent

xiii



xiv Version abrégée en français

la génération du maillage de discrétisation, ce qui est une procédure com-
pliquée. Les maillages non-structurés souffrent en outre de leur structure de
données inefficaces. D’ailleurs, le maillage doit être généré à chaque pas de
temps si l’obstacle se déplace ou se déforme.

Plus récemment, d’autres méthodes ont été développées. Parmi eux, la mé-
thode de frontière immergée2 et la méthode de pénalisation volumique3. Ces
méthodes ne nécessitent pas de maillages conformes. Elles sont plutôt réso-
lues sur des maillages réguliers cartésiens qui ne changent pas dans le temps.
Afin de prendre en compte les conditions aux limites, des termes supplémen-
taires sont inclus dans l’équation de Navier–Stokes.

Cette idée a d’abord été proposée par Peskin pour simuler l’écoulement dans
le cœur humain. Son idée utilise des termes de forçage sur l’interface entre le
fluide et le solide. Plus tard, Angot a introduit la méthode de pénalisation vo-
lumique. Dans cette méthode, le volume entier du corps est forcé, en ajoutant
le terme −(χ/Cη)u aux équations de Navier–Stokes, où χ = 1 à l’intérieur de
l’obstacle et χ = 0 à l’extérieur. La méthode est inspirée par l’intuition phy-
sique qu’un milieu poreux avec une porosité Cη peut imiter une paroi solide
imperméable, si la porosité est suffisamment faible.

Dans cette thèse nous utilisons exclusivement la méthode de pénalisation vo-
lumique. Nous allons montrer qu’elle peut fournier des résultats précis même
pour des problèmes assez complexes.

La méthode de pénalisation est une technique pour inclure les conditions aux
limites dans l’équation originale, ainsi découplant la discrétisation spatiale et
la géométrie du problème. Cependant, une discrétisation est toujours néces-
saire. Dans notre cas, les équations de Navier–Stokes pénalisées sont résolues
en utilisant une méthode spectrale basée sur la transformée de Fourier. Les
dérivées spatiales d’une quantité u sont calculées dans l’espace de Fourier, en
multipliant ces coefficients de Fourier, û, par ik, où k est le nombre d’onde.
L’opérateur de Laplace devient une multiplication par − |k|2, ce qui est donc
un opérateur diagonal. Par conséquent la résolution numérique d’une équa-
tion de Poisson, comme elle apparaît souvent dans les écoulements incom-
pressibles, est une division simple. Ceci est un grand avantage par exemple
sur les méthodes de différences finies, où l’opérateur de Laplace est une ma-
trice creuse mais non-diagonale.

Pour basculer entre l’espace physique et celui de Fourier, la transformation
rapide de Fourier est utilisée. Cet algorithme a une complexité de N log N.
Il est nécessaire de basculer entre les deux espaces car le terme non-linéaire

2Traduit littérairement de l’anglais : “Immersed boundary method”
3Traduit littérairement de l’anglais : “Volume penalization method”
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contient des produits en espace physique, ce qui se transforme dans des pro-
duits de convolution dans l’espace de Fourier. Ces derniers sont très coûteux
à évaluer, avec une complexité de N2. En calculant le terme non-linéaire dans
l’espace physique nous évitons ces produits de convolution.

Même si la transformée de Fourier rapide (FFT) est plusieurs ordres de gran-
deur plus efficace que la transformée lente, cela reste une opération coûteuse.
Par contre, d’un point de vue algorithmique, la méthode spectrale permet de
concentrer la plupart des efforts de calcul dans un seul endroit, en effet la FFT
et son inverse. Ce fait simplifie l’optimisation du code numérique. On peut
d’ailleurs bénéficier des bibliothèques numériques existantes qui sont très ef-
ficaces et consacrées uniquement à la transformée de Fourier. Par conséquent,
le calcul numérique peut se faire facilement dans les grands centres de calcul,
utilisant les plus grands ordinateurs au niveau mondial. Les résultats présen-
tés dans cette thèse on été obtenus avec de tels machines en utilisant plusieurs
milliers de cœurs de calcul.

–

Puisque la transformée de Fourier est périodique par définition et ne tiens pas
compte des conditions aux limites, nous devons utiliser la méthode de pé-
nalisation pour simuler l’écoulement autour des obstacles complexes, comme
les insectes que l’on analyse dans cette étude. Néanmoins, la méthode de
pénalisation volumique introduit un nouveau paramètre, Cη, pouvant être in-
terprété comme une porosité artificielle. Il est intuitivement clair que pour
imiter un obstacle solide, Cη doit être “petit”. Par contre, l’opérateur de péna-
lisation, −(χ/Cη)u, devient plus raide si Cη est plus petit. Cela a des consé-
quences importantes, car on est obligé de traiter la discrétisation temporelle
d’une manière explicite. Par conséquent, le pas de temps ∆t doit être inférieur
à Cη, d’où le désir de choisir Cη “petit, mais aussi grand que possible”. Nous
examinons en détail comment choisir Cη pour obtenir des résultats optimaux
avec une erreur minimale, et un coût de calcul aussi faible que possible.

Puisque la transformation de Fourier est périodique, nous discutons des tech-
niques d’absorption de sillage. Sans traitement spécifique, les tourbillons gé-
nérés par un obstacle, dans notre cas un insecte, ne quittent pas le domaine
de calcul. Pour compléter le répertoire de méthodes numériques que l’on pos-
sède, on développe ainsi une technique d’éponge. Il s’agit d’un terme de pé-
nalisation pour la vorticité ω = ∇× u, plus précisément −(χsp/Csp)ω. Pour
l’ajouter à l’équation de Navier–Stokes pénalisée, il faut appliquer l’opérateur
de Biot-Savart, ce qui est l’inverse du rotationnel. Par conséquent, le terme

devient −∇×
(

χsp
Csp

(ω−ω0)
)

∇2 . Il faut donc résoudre trois problèmes de Poisson,
mais ceci est facilement possible dans l’espace de Fourier, comme nous l’avons
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expliqué précédemment. Le terme d’éponge a des avantages dans le cas d’un
écoulement extérieur, car il est de divergence nulle et il n’a pas d’impact sur
l’écoulement moyen. Il ne faut alors pas savoir en avance à quelle vitesse
l’écoulement moyen se déplace, ni de modifier l’équation de Poisson pour la
pression.

Les forces intégrales exercées sur l’obstacle peuvent dans notre cas être calcu-
lées par intégration sur le volume du corps, F =

´ χ
Cη

udV.

La méthode de pénalisation a été proposée d’abord pour des obstacles im-
mobiles. Dans ce cas, la fonction de masque, χ, a été choisie d’une manière
discontinue, χ = 1 dans l’obstacle et χ = 0 sinon. Cette fonction de masque
n’est pas très appropriée si l’obstacle se déplace ou se déforme, puisqu’elle
ne peut être déplacée par un point de grille entier. Ce mouvement saccadé
produit des grandes oscillations dérangeant les forces hydrodynamiques. Par
conséquent, on introduit une fonction de masque glissé, avec une couche fine
de glissement. Dans la limite ∆x → 0, elle converge vers une fonction ca-
ractéristique. Par contre, la couche de glissement permet de la déplacer par
des incréments plus petits que ∆x, et permet ainsi la simulation des obstacles
déformables. En pratique nous introduisons la fonction de distance signée,
δ, qui donne pour chaque endroit x l’éloignement de l’interface fluide-solide.
Cette fonction est à la base de notre algorithme. La fonction de masque est
ensuite calculée à partir de la fonction de distance, χ (δ).

Tous les aspects mentionnés ci-dessus sont implémentés dans le logiciel FluSI,
notre code open-source pour la simulation des insectes avec la méthode de
pénalisation combinée avec une discrétisation spectrale.

Partie II : Insectes avec des ailes rigides

Dans la prochaine partie nous appliquons notre méthode décrite précédem-
ment à la simulation des insectes avec des ailes rigides.

Nous commençons par décrire le modèle mathématique qui représente un in-
secte. Ce modèle suppose que les ailes sont des plaques fines et rigides sans
profil aérodynamique. Pour une grande gamme d’insectes cette hypothèse est
valable. Par contre, dans certains cas, des grandes déformations des ailes ont
été observées expérimentalement et il faut donc être conscient de cette limi-
tation du modèle. Dans le cas d’un papillon, par exemple, les déformations
peuvent être non-négligeables. Cependant, le problème complet, c’est-à-dire
un insecte avec des ailes déformables, est nettement plus difficile à déduire.
Il existe très peu de données sur la flexibilité des ailes, et leur structure très
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complexe, composée de membranes et barres flexibles, est un champ de re-
cherche entier et peu exploré. Les ailes flexibles sont alors hors de portée de
cette thèse.

Nous supposons qu’un insecte est composé d’un corps et de deux ailes. Même
si beaucoup d’insectes on effectivement quatre ailes, les ailes se comportent
souvent comme une aile effective. Par contre, notre approche permet éga-
lement d’ajouter plus d’ailes indépendantes, si nécessaire, mais nous allons
laisser de côté cette possibilité. Le corps de l’insecte a trois degrés de liberté
de rotation et trois de translation. Les deux ailes peuvent tourner autour de
l’épaule par trois angles. Par conséquent, un insecte avec des ailes rigides
possède 12 degrés de liberté.

Nous décrivons d’abord les transformations linéaires pour changer entre les
différents repères, ce qui est effectué par une séquence de matrices orthogo-
nales de rotation. Par exemple, pour passer du repère global (ou de labora-
toire) à celui fixé sur le corps, nous utilisons

x(b) = Mbody (ψ, β, γ)
(

x(g) − x
(g)
cntr

)

Mbody = Rx (ψ) Ry (β) Rz (γ) ,

où x(g) est la position dans le repère global et x(b) celle dans le repère fixé
au corps. Les matrices de rotation Rx (ψ) , Ry (β) et Rz (γ) sont des matrices
orthogonales de roulis, tangage et lacet. Des transformations similaires sont
utilisées pour passer au repère des ailes.

La cinématique des ailes, c’est-à-dire les trois angles de rotation en fonction
du temps, est prescrite par une série de Fourier ou d’Hermite. De cette façon,
un mouvement arbitraire de l’aile peut être simulé, et ce mouvement est lu
à partir d’un fichier. L’évolution temporelle de ces angles est fournie par des
expériences publiées précédemment.

La forme de l’aile est décrite dans son repère en utilisant les coordonnées po-
laires. Ceci est possible car l’aile est supposée être plate (il s’agit d’un objet à
deux dimensions). Cette fonction est aussi périodique et donc à nouveau une
série de Fourier est utilisée pour stocker la forme. Comme pour la cinéma-
tique, la forme est prélevée des articles publiés.

La puissance aérodynamique est la puissance nécessaire pour déplacer l’aile
contre la résistance du fluide, tandis que la puissance inertielle est la puis-
sance requise pour déplacer l’aile dans le vide. Nous discutons la façon de
calculer les deux composantes de la puissance. On note d’ailleurs qu’il est
très difficile de mesurer la puissance expérimentalement, beaucoup de résul-
tats expérimentaux sont en effet basés sur des modèles simplifiés. Cependant,
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notre méthode permet d’obtenir des valeurs précises pour la puissance aéro-
dynamique, au moins dans les limites du modèle, notamment les ailes rigides.

Dans le calcul numérique des insectes, deux situations principales apparaissent
souvent : le vol fixe et le vol libre. Dans le premier cas, l’insecte est attaché
d’une manière fixe ; il ne peut donc pas bouger. Ceci est utile pour étudier la
production de force et la consommation d’énergie en négligeant le problème
du contrôle de vol. Dans le cas du vol libre, la position du corps et de l’orien-
tation est calculée à partir des forces aérodynamiques. Il a été démontré que
le vol des insectes est instable en soi, c’est-à-dire que l’animal doit contrôler
sa position et son orientation d’une manière continue. Sans contrôle actif, l’in-
secte commence à tourner est s’écrase finalement. Dans un premier temps, on
considère le vol fixe. Par contre, les équations pour le vol libre sont également
décrites et prêtes à être utiliser.

Après avoir introduit le modèle, nous présentons des cas de test de validation.
Ceci est une étape importante pour démontrer que nos résultats sont valables,
par contre, il a été dur de trouver des cas de test suffisamment bien décrits
pour les reproduire. Nous commençons avec une seule aile pour comparer
avec l’expérience de Suzuki et ses collègues. L’aile est un simple rectangle
et elle suit un mouvement facile. D’ailleurs, elle est d’épaisseur finie. Nos
résultats collent très bien à ceux obtenus par Suzuki et al.

Ensuite, pour conclure la section de validation scientifique, nous procédons à
un cas test plus complexe. On considère alors le modèle d’une drosophile, une
petite mouche (longueur des ailes ≈ 2.5 mm). Son nombre de Reynolds, basé
sur la vitesse moyenne des ailes et l’envergure moyenne, est de Re = 136. Ce
cas test a été choisi car Maeda et al. ont fourni une description suffisamment
précise pour permettre la reproduction de leurs résultats. Dans ce cas, on
inclut le corps ainsi que la deuxième aile. De nouveau, nos résultats coïncident
avec les résultats obtenus par l’autre équipe, avec une différence de moins de
2%.

Après avoir décrit et validé notre modèle d’insecte, nous allons faire de la
recherche originale. L’animal choisi est un bourdon, un insecte nettement plus
grand qu’une drosophile (longueur d’aile ≈ 13 mm). Par conséquent, son
nombre de Reynolds est plus élevé, Re ≈ 2000. Dans ce cas, la mécanique
des fluides est plus compliqué, et le champ de vorticité produit par les ailes
présente des vortex de toute taille. Ainsi le sillage peut être considéré comme
turbulent. Le bourdon a été choisi car d’autres équipes avait publié des donnés
sur la cinématique de ses ailes, ce dont nous avions besoin pour construire
notre modèle. Par ailleurs, le bourdon est connu pour voler même dans des
conditions difficiles, par exemple en cas de jours très venteux.

L’idée de base de cette partie de la thèse est d’étudier pour la première fois le
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vol d’insecte dans un écoulement turbulent. Malgré le fait que tous les insectes
volent dans un environnement plein d’obstacles qui génèrent un écoulement
turbulent et complexe, presque tous les travaux existants ont considéré l’ani-
mal dans un écoulement non-perturbé et laminaire. Spécifiquement, il n’y
avait aucune simulation numérique de cette configuration. D’ailleurs, le code
décrit et développé précédemment est bien adapté à une telle configuration :
puisque la méthode spectrale résout les équations sur un maillage équidistant,
le fait d’avoir une distribution homogène des échelles en espace n’augmente
pas le coût de calcul. Au contraire, inclure de la turbulence est presque gratuit
de ce point de vue.

Puisqu’il s’agit des premières simulations de ce type, il nous faut d’abord
un point d’orientation quelle type de turbulence peut être importante pour
l’insecte, ainsi que quelle intensité. Dans la nature, l’écoulement généré, par
exemple, par un arbre, est à priori non-isotrope et inhomogène. Par contre,
dans une certaine distance, la turbulence a tendance à s’homogénéiser. Par
conséquent, le modèle de turbulence que l’on considère est celui de la tur-
bulence isotrope et homogène. Pour choisir son intensité, on considère le
sillage généré par le bourdon dans un écoulement laminaire. Dans le voisi-
nage proche de l’insecte, on observe des intensités relatives de turbulence de
plus de 60%, où on définit l’intensité relative comme Tu =

∣∣u′RMS

∣∣ / |u∞|.
Dans une distance de cinq fois la longueur d’aile en aval, on trouve toujours
une intensité de plus de 16%. Ces intensités de turbulence sont grandes par
rapport à celles que l’on considère dans l’ingénierie, où 0.8-2% est appelé
“turbulent”.

Avec le modèle de bourdon, qui est conçu pour être en équilibre en vol la-
minaire, et le modèle de turbulence, on peut ensuite passer à l’étude de la
combinaison des deux. On conçoit une soufflerie numérique avec un flux d’air
turbulent en amont. L’insecte reste fixé dans le repère du laboratoire, ce qui
nous permet d’étudier l’impact de la turbulence sur la production des forces
uniquement. La question que l’on se pose est de savoir si les perturbations tur-
bulentes peuvent déstabiliser le tourbillon de bord d’attaque. Si tel est le cas,
nous pouvons nous attendre à une réduction significative de la production de
la force de portance.

Vu que la turbulence est un phénomène intrinsèquement aléatoire, il faut
répéter la simulation avec une autre réalisation de turbulence avec les même
propriétés statistiques (intensité, nombre de Reynolds, etc.). Ensuite, calculer
la moyenne d’ensemble sur les quantités d’intérêt, par exemple la force de
portance, permet de tirer des conclusions statistiques.

On varie l’intensité de la turbulence entre 16% et 99%. Dans le dernier cas,
les fluctuations de vitesse sont aussi importantes que l’écoulement moyen,
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ce qui représente alors un écoulement fortement turbulent. Cependant, les
moyennes statistiques des forces, moments et puissance aérodynamique ne
changent pas avec l’intensité de turbulence. Évidemment, leur variances aug-
mentent, mais la valeur moyenne reste constante. Ce comportement diffère
de celui des profils aérodynamiques. Dans leur cas, des petits perturbations
en amont peuvent déclencher des effets transitoires dans la couche limite -
par conséquent, les forces moyennes ne sont plus les mêmes que dans le cas
laminaire.

Le fait que les forces ne sont pas statistiquement changées dans le cas du
bourdon peut être expliqué par le fait que le tourbillon de bord d’attaque
n’est pas déstabilisé par l’afflux turbulent. En effet, la visualisation du champ
de vorticité, moyennée statistiquement, montre clairement l’existence de ce
vortex, même dans les conditions les plus turbulentes considérées ici.

Des études expérimentales ont démontré que des abeilles s’écrasent dans
un écoulement suffisamment turbulent. Combiné avec nos résultats, on peut
conclure que voler dans une zone turbulente pose un problème de contrôle
pour l’animal, plutôt que des difficultés de générer suffisamment de portance
pour rester en air. Nous pouvons également faire le lien avec ces expériences
en intégrant le moment aérodynamique sur le temps de réaction, et nous
confirmons avec nos donnés que le bourdon ne peux pas contrôler son orien-
tation dans la turbulence avec une intensité de 99%.

Partie III : Obstacles flexibles

Jusqu’à présent, les ailes d’insectes ont été considérées comme des plaques
rigides. Or, on sait que ceci n’est qu’une approximation ; en réalité, les ailes
sont tellement fines qu’elles se déforment durant leurs mouvements. On a
déjà discuté que du point de vue mécanique, les ailes sont des structures
énormément complexes, et pour les modéliser d’une façon rigoureuse, il faut
mesurer leurs propriétés élastiques. Par conséquent, un tel modèle est au-delà
de la portée de cette thèse.

Cependant, nous allons faire les premiers pas dans cette direction, et dans la
troisième partie de cette thèse, nous passons à des obstacles qui peuvent se
déformer sous l’action du fluide. Le but final de ces efforts est de modéliser
les insectes complets avec des ailes flexibles en écoulement turbulent.

Nous nous limitons donc à des modèles plus simples dans un premier temps,
et nous considérons une plaque qui est flexible dans une direction et rigide
dans les autres. Ainsi, elle est décrite par une équation à une dimension ;
effectivement, il s’agit d’une barre. D’abord, nous dérivons cette équation.
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On suppose que le matériel soit linéaire, c’est-à-dire il est décrit par une loi
constitutive linéaire. Par contre, nous admettons des grandes déformations,
le modèle est donc géométriquement non-linéaire. Ceci est motivé par le fait
que dans les problèmes que l’ont veut considérer, appliqués aux problèmes
en biologie, les déformations sans habituellement grandes. Contrairement à
cela, les problèmes qui se posent dans l’ingénierie traitent souvent des petites
déformations ce qui entraîne une linéarisation. Après avoir dérivé le modèle,
nous développons et validons un code numérique pour le résoudre. Ce code
est basé sur une discrétisation en différences finies, et le schéma temporel est
implicite. Ce type de discrétisation temporel est nécessaire car les équations
contiennent un terme du type ∂xxxxu . Par conséquent, le équations sont très
raides, et un schéma explicite devrait satisfaire une condition du type ∆t <

C∆x4. On conclut la description du modèle en comparant avec des résultats
fournis dans la littérature, et on confirme sa validité.

Ensuite, nous souhaitons coupler cette équation avec les équations de Navier–
Stokes pour simuler des problèmes d’interaction fluide-structure. Cela néces-
site de générer la fonction de masque, χ (x, t), ainsi que le champ de vitesse
à l’intérieur du solide, us. Pour la fonction de masque, on décrit comment
on peut calculer la fonction de distance pour chaque point x du maillage eu-
lérien. On propose un algorithme qui est généralisé mais à la fois efficace.
La vitesse u est interpolé avec la projection de x sur la ligne au milieu de la
plaque. Avec les deux composantes, χ et us, un peut inclure le solide dans le
fluide. Il ne reste alors que le couplage dans l’autre sens.

La structure flexible tient compte du fluide par les forces sur la surface, no-
tamment le tenseur de tensions newtoniens. Il faut alors utiliser une technique
d’interpolation pour transférer cette quantité, qui est une quantité eulérienne,
sur la barre qui est une structure lagrangienne. On discute quels types d’inter-
polation peuvent être utilisés pour effectuer ce transfert, et quels problèmes
peuvent apparaître.

On a jusqu’à présent décrit les termes de couplage fluide-solide et solide-
fluide. Par contre, une partie importante de la solution numérique pour les
problèmes d’interaction fluide-structure est le couplage temporel. Les deux
champs physiques ont des caractéristiques très différentes. Les équations du
modèle solide sont raides et nécessitent une discrétisation temporelle impli-
cite. Le grand nombre d’inconnus pour le fluide exige cependant une discréti-
sation temporelle explicite. Nous décrivons comment ces différentes discréti-
sations peuvent être combinées, et les problèmes pour la stabilité qui peuvent
se produire. Il est en général plus simple de considérer un solide nettement
plus dense que le fluide. Si le rapport de densité s’approche de un, des insta-
bilités se produisent. On peut les stabiliser en performant des itérations.
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Un autre aspect important est la conservation de l’énergie ; on souhaite que
l’énergie transmise de la structure au fluide soit la même que dans l’autre
sens. Autrement dit, on voudrait que la couplage n’introduise pas d’énergie
artificielle. On montre que ceci n’est pas le cas dans notre algorithme en
considérant un exemple bidimensionnel. Le chapitre est clos avec des tests
de validation, qui montre que le code complet donne des résultats valables
pour des problèmes de 2D et 3D.

Ensuite, nous appliquons le nouveau code à des problèmes à deux dimensions,
avant de passer aux problèmes tridimensionnels.

Le premier scénario traite une configuration archétype des problèmes interac-
tion fluide-structure, celle d’une barre immergé dans un fluide parallèle à la
barre. Le comportement physique, c’est-à-dire sa stabilité, est étudié. Le pro-
blème est décrit par trois paramètres : le nombre de Reynolds, l’élasticité et la
densité relative du solide. En fonction de ces paramètres, trois types de com-
portement sont possibles. La barre peut être stable, c’est-à-dire elle revient
dans sa configuration initiale si elle est perturbée, ou montrer une réponse
dynamique. Le cas dynamique est divisé dans un comportement périodique et
chaotique. Ce type de problème est aussi lié aux insectes, même si d’une fa-
çon plus abstraite. Vu que les ailes sont flexibles, elles peuvent avoir le même
comportement, par exemple en vol plané. Il est important que l’aile soit dans
le régime stable pour éviter la fatigue du matériau.

Le deuxième problème 2D qu’on étudie est plus directement inspiré par les in-
sectes. On considère deux barres, qui sont censées représenter deux sections
d’ailes, par exemple d’une libellule. Ces animaux ont quatre ailes indépen-
dantes. Nos barres suivent un mouvement de soulèvement imposé à leur bord
d’attaque. Suite à leur flexibilité, l’angle d’attaque effectif est non-zéro, même
si on n’impose pas de rotation active. Par conséquent, les deux barres pro-
duisent une force de propulsion. On s’intéresse particulièrement au décalage
entre les deux mouvements d’ailes.

Pour conclure, nous considérons les problèmes en trois dimensions spatiales
dans le dernier chapitre. La configuration est inspirée par les poissons, qui ont
tendance à générer une force propulsive avec leurs nageoires caudales. Des
travaux expérimentaux ont montré comment les effets de taille finie peuvent
influencer la vitesse de natation, ici nous étudions numériquement l’influence
de la forme de la nageoire sur sa performance. Nous trouvons qu’une forme
convergente, comme on le voit dans certains nageurs amphibies, surpasse
une forme divergente, qui est observée chez les poissons. Nous expliquons
ces résultats par la dynamique des fluides.
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Chapter 1

Introduction

The capabilities of animals for flying, swimming and running have fascinated
researchers for a long time, and they are of high interest for a large, interdis-
ciplinary community of biologists, engineers, physicists and mathematicians.
Many animals have developed, through natural selection, efficient ways of
transportation, which are mostly quite different from current human-designed
vehicles. For example, animals have legs while cars have wheels, fish swim
using their fins and submarines use rotors, and insects flap their wings, unlike
fixed-wing or rotary flight in aircraft. In many cases, these ’unusual’ solutions
may be more efficient, which fosters the interest of understanding and im-
itating them. Though walking and running are fascinating fields [63], we
will focus on swimming and flying, and more precisely on their numerical
modeling, for the rest of this thesis.

To give an example, engineers try to understand and copy the aerodynamic
strategies employed by insects, in order to build bio-inspired micro air ve-
hicles (MAV), allowing the remote observation of hazardous environments
inaccessible to ground vehicles [100]. But also besides such a technological
interest, the biological success of this class of invertebrates requires to know
their aerodynamic capabilities, which is relevant for example for agriculture
or for medicine, as several tropical diseases are transmitted by insects [74]. It
is thus important to be able to predict their possible spreading and migration.

Flexibility is an important feature of animal locomotion. While rotor blades
are mainly designed to be stiff or almost rigid, fish fins or insect wings can
undergo severe deformation without being damaged [32, 91, 152]. More-
over, animals actively exploit the properties of the coupled fluid–solid system
to maximize their efficiency [66, 134, 189]. This implies that to study the
aero– or hydrodynamics of animal locomotion, the fluid–structure interaction
problem can mostly not be neglected, thus coupling the fields of fluid and
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solid mechanics [15].

The traditional way to investigate the fluid mechanics of animal locomotion
is through observation and experiments. Specifically designed experiments
isolate certain factors and reduce the overall complexity of the problem, com-
pared to the actual animal. Insects, for example, have developed sophisticated
sensory systems and neural feedback loops that constantly measure imping-
ing inflow and flight conditions, and adapt the wing beat accordingly. This
active response to aerial perturbations is thus highly complex and currently
poorly understood.

However, the rapid progress in the field of numerical fluid dynamics during
the last decades has opened an alternative to the experimental approach:
the numerical simulation. This is the method employed in this thesis. Sim-
ulations are based on solving the Navier–Stokes equation which govern the
fluid [7] using numerical approximations on high performance supercomput-
ers [53]. Though still challenging, numerical simulations of the fluid dynam-
ics of animal locomotion offers unique opportunities. This is not limited to the
availability of the entire flow field, possibly down to the smallest vortex, in
a quality unobtainable experimentally. Moreover, simulations allow to easily
vary the parameters of a system beyond natural limits, which helps identify-
ing the influence of these parameters. The fluid viscosity is such a parameter;
it is difficult to vary experimentally, for example when studying insect flight
in air. Furthermore, simulations allow turning off steering mechanisms and
studying the flight without the active control system. In combination with
experiments, this allows extracting the animal’s active response to aerial per-
turbations, which is of major interest likewise for biology and engineering.

The present thesis is placed in this interdisciplinary field of nature-inspired
fluid dynamics, and the focus lies on numerical simulations thereof. This nat-
urally involves advancing numerical tools and algorithms, notably the two–
dimensional numerical method for fixed obstacles presented in [144], which
has later been extended to three-dimensional as well [86]. This method,
which is the starting point of the thesis, allows studying moving, rigid obsta-
cles, but could not be applied to deforming ones. Therefore, a new approach,
based on the signed distance function, has been developed. This algorithm
also proved beneficial for rigid obstacles, due to a significant reduction in
computing time while increasing both versatility and precision. It is therefore
used exclusively in the present thesis. Being the common ground for both
rigid and flexible obstacles, the basic numerical method is presented first, in
chapter 2.

Due to their differences in physics and applications, the remaining part of this
work is divided into two major parts, dealing with rigid and flexible obstacles,
respectively. Part II thus deals with rigid obstacles exclusively, and the focus
of the applications lies on flapping insects. Like previous studies on flapping
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insect flight, we thus assume that the wings operate as rigid, non–deformable,
flat plates [29, 97, 158, 174, 182, 188]. The employed numerical approach
allows studying arbitrarily complex geometries, thus our virtual insects can
include wings, body, head and even legs and antennae. The model is de-
scribed in detail in chapter 3, including detailed validation tests proving its
correctness. We then proceed and exploit another advantage of our method
by studying a bumblebee in forward flight through fully developed turbu-
lence (chapter 4). These simulations are the first of their kind and show that
basic aerodynamic mechanisms, like the leading edge vortex, are not vitally
harmed by turbulent perturbations. We conclude that turbulence faces insects
with an increased demand for control, and not a systematically deteriorated
force production. This is different from airfoil-based flight at low-Reynolds
numbers, as the transition of the boundary layer from laminar to turbulent
can drastically alter the force production [117].

The long-term goal of our research is to study insects with flexible wings in
turbulent flow. Our basic numerical method allows simulating these fluid-
structure interaction problems as well, and we begin part III in chapter 5 with
specific ingredients unused in the previously considered rigid models. Fluid-
structure interaction problems naturally require a suitable solid model. As
the solid mechanics of real insect wings are highly complex [22, 23], a model
fully describing them is beyond the scope of this thesis. Instead, we rely on a
one–dimensional model, which we use to study two– and three–dimensional
problems. In the latter case, our solids are assumed rigid in one direction.
The coupled fluid–solid system is studied in chapter 6 in a two–dimensional
setting. We consider first the canonical problem of the fluttering instability,
from which we proceed to study the thrust generation by flexible heaving
foils. The latter configuration is inspired by a ’mechanical insect’ designed to
study the coupling between the flapping frequency and the structural resonant
frequency [134].

In chapter 7, we present three–dimensional simulations of fluid–structure in-
teraction problems. The application chosen is the thrust production in swim-
ming fish. Therefore, simplified ’swimmers’ are devised, consisting of a flex-
ible plate with a driven pitching motion. This setup has also been used ex-
perimentally [135]. Many contributions in this field investigate the role of
structural resonances, and how animals exploit these to maximize their effi-
ciency [28, 135, 186]. Our contribution instead focuses on the influence of
the swimmers shape, since actual fish obviously differ from the rectangular
plates. Our surprising finding is that a contracting shape, as observed in some
amphibians, swims faster and consumes less power than an expanding shape,
which is similar to the caudal fins in many fish. We explain this finding by a
favorable impact on the tip vortices which are due to finite-size effects.

Finally, conclusions on the developed method and the obtained results are
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given, and some perspectives for future work are discussed.



Chapter 2

Basic numerical method

The content of this chapter is adopted from [44], [46] and [45].

The numerical simulation of bio-inspired fluid dynamics has become an im-
portant cornerstone in understanding aerial and aquatic bio-locomotion. While
experiments are most reliable in terms of realism, it is difficult to precisely
control the input parameters, and some quantities, like the flight forces, are
subject to appreciable uncertainty, if available at all. Experiments with living
animals account for the whole complexity, that is, the generation of hydrody-
namic forces, measurements by the animal’s sensory system and correspond-
ing kinematic response, in addition to the difficulty to encourage animals to
fly or swim under laboratory conditions, preferably in a repetitive fashion. In-
sects, for example, often refuse to fly in a smokey environment, which renders
laser measurements of the flow difficult. Numerical experiments on virtual in-
sects or fish allow studying non-controlled locomotion with prescribed motion
patterns, which in combination with experiments allows drawing conclusions
on the role of active steering and stabilization mechanisms.
Fluid–structure interaction (FSI) problems involve, as the name suggests, the
interaction of fluid with a solid body. The problems can be divided into rigid

and flexible obstacles, and whether the deformation is actively computed from
the fluid forces, i.e., the coupled problem is solved, or passively imposed, e.g.,
measured externally and then prescribed in the simulation.
For the numerical solution of these problems, an abundant variety of methods
and strategies exist, see for example the books [15, 16]. A broad classifica-
tion can be made based on the grid used for discretization, depending on
whether or not it is adapted to the problem’s geometry. In the former, classi-
cal category, the computational grid is fitted to the boundary. It is used, for
example, to simulate insects with rigid flapping wings [96, 97]. For flexible
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obstacles with active FSI, Gomes et al. [67] used a structured, partitioned
mesh that matches the interface of a flexible appendix in the wake of a cylin-
der, and studied the flow-induced vibrations both numerically and experi-
mentally. A general difficulty of this family of methods is the generation of
suitable meshed, a question which has been addressed for example by Wick
[177] for structured, moving meshes or by Bathe et al. [8] based on unstruc-
tured grids. In fact, the grid generation alone is a challenging problem [162]
in its own. However, these methods have been used successfully for a wide
range of active FSI problems, e.g., [31, 165, 166].

The difficulty of grid generation fueled the development of methods that do
not have this requirement, most prominently the immersed boundary method,
originally proposed by Peskin to compute the flow in the human heart [130].
Nowadays, a large variety of variants of the immersed boundary method have
been developed, see e.g., the reviews [112, 131]. A popular variant is the
direct forcing method, which essentially tries to impose the surface forcing
at one time step to reach exactly the desired boundary condition at the next
instant [167].

In this work, we employ the volume penalization method to take the bound-
ary condition into account. The idea of modeling solid obstacles as permeable
media with a small permeability has first been proposed by Arquis and Calt-
agirone [5]. The forcing term acts on the entire volume of the solid and not
only on its surface, as it is the case in the immersed boundary methods, and
corresponds to the Darcy drag. The method’s distinctive feature is the exis-
tence of a rigorous convergence proof by Angot et al. [4], which has later
been refined [18]. It has been extended to model not only Dirichlet condi-
tions in moving, rigid obstacles [87], but also homogeneous Neumann condi-
tions, which is relevant for studying the turbulent mixing of a passive scalar
[80]. As animals forage following odor traces, this technique can potentially
be attractive for insect flight simulations as well. Variants of the penaliza-
tion method have been developed for compressible flow [14, 98, 148] and
magneto-hydrodynamics [114, 115]. An interesting recent development has
been proposed by Introini et al. [10, 75], the core idea being a modified pro-
jection scheme in a finite-differences context. Then, the Neumann boundary
condition proposed by Kadoch et al. [80] appears for the pressure. Another
variant, specifically adopted to impulsively started flow is the iterative penal-
ization method proposed by Hejlesen et al. [70].

In the context of biolocomotion, the penalization method has been used to
study the C–start of a fish at rest by Gazzolla et al. [61], which showed,
using a genetic algorithm, that the observed, natural starting behavior is the
best solution for this type of problem. A main advantage of the penalization
method is its simplicity in implementation and computation, which is a crucial
perquisite for the usage of genetic algorithms. It is also straightforward to
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study several animals, for example the collective behavior of fish schools [60].

The remainder of this chapter is organized as follows. After a short discus-
sion about the assumption of incompressible fluid, we introduce the penalized
version of the incompressible Navier–Stokes equations in section 2.1. The vol-
ume penalization method is discussed in some detail and extended to arbitrar-
ily moving and deforming obstacles in section 2.3, and we briefly revisit the
governing equations in two spatial dimensions in section 2.2. Ways to com-
pute hydrodynamic forces and moments are discussed in section 2.4, as well
as imposing outflow boundary conditions in section 2.5. The discretization
used in this work is summarized in sections 2.7-2.9. As this works deals with
rigid and flexible obstacles, we present in this chapter only their common
ground, and discuss specific details, for example the numerical fluid–solid
coupling, in the respective chapters.

2.1 Model equations and penalization method

This work deals with fluid–structure interaction problems in biological con-
texts, namely flying insects and swimming fish. In those problems, the fluid
can typically be approximated as incompressible. Batchelor [7, pp. 167]
states five conditions required for this assumption to be valid, of which the
following two apply to the present work:

U2

c2 ≪ 1
f 2L2

c2 ≪ 1,

where c is the speed of sound and U, f , L are relevant scales for velocity, fre-
quency and length, respectively. The first condition is the well known state-
ment of small Mach numbers Ma = U/c. For example, we find for the Mach
number based on the wingtip velocity of a fruitfly (FF) and a bumblebee (BB),
both flying in air, to be MaFF = 0.0075 and MaBB = 0.024, respectively. The
Mach numbers are thus appreciably smaller than Ma = 0.3, which is the limit
often used in engineering. The second condition represents the unsteadiness
of the flow, and all phenomena studied here are essentially unsteady. Again
considering a fruitfly and a bumblebee for illustration, we find the Strouhal
number St = f L/c to be StFF = 0.016 and StBB = 0.0057. For these insects
both conditions are thus met, and this applies to virtually all flying insects,
justifying the incompressibility assumption. The same is true for swimming in
water. The fluid is thus governed by the incompressible Navier–Stokes equa-
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Figure 2.1.1 – Domain definitions. Solid obstacles Ωs immersed in a fluid domain
Ω f .

tions

∂tu + ω× u = −∇Π + ν∇2u + Fp (2.1.1a)

∇ · u = 0 (2.1.1b)

u|∂Ωs(s,t) (s, t) = us (s, t) (2.1.1c)

u (x, t = 0) = u0 (x) (2.1.1d)

where u is the fluid velocity, ω = ∇× u is the vorticity, ν is the kinematic
viscosity, the fluid density ̺ f is normalized to unity and Fp is an external force,
usually a pressure gradient. These equations are formulated in dimensionless
units, using the scales L, T, U = L/T and M for length, time, velocity and
mass, respectively. As the fluid density is always normalized to unity, the
mass scale is given by M = ̺ f L3. The nonlinear term in eqn. (2.1.1a) is
written in the rotational version, thus one is left with the gradient of the
total pressure Π = p + 1

2 u · u instead of the static pressure p [132]. This
formulation is chosen because of its favorable properties when discretized
with spectral methods, namely conservation of momentum and energy [132,
pp. 210]. A sketch of the problem is given in figure 2.1.1. The no–slip
boundary condition, eqn. (2.1.1c), is satisfied on the fluid–solid interface
∂Ωs. The boundary condition is inhomogeneous since moving and deforming
obstacles are considered.

Equations (2.1.1a-2.1.1d) can, in general, not be solved analytically. It is
thus common to employ numerical approximations, however, eqns. (2.1.1a-
2.1.1d) pose two major challenges. The most severe difficulty is the fact that
the pressure p (or, equivalently, Π) is not a thermodynamic variable satisfy-
ing an equation of state, but rather a Lagrangian multiplier that ensures the
divergence-free condition (2.1.1b). It adapts instantaneously and not with a
finite speed of sound [17]. In addition, the boundary condition (2.1.1c) must
be satisfied on a possibly complicated, moving and deforming fluid–solid in-
terface. Traditional numerical approaches rely on boundary-fitted grids to
cope with the latter and fractional step methods [82], requiring to solve a
Poisson problem for the pressure, to cope with the former difficulty.

Since the generation of boundary-fitted grids for complicated geometries is
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a challenging problem on its own [162], which possibly has to be repeated
at every time step, alternatives have been developed. The principal idea is
to extend the computational domain to the interior of obstacles as well, i.e.,
Ω = Ω f

⋃
Ωs in figure 2.1.1. The boundary is then taken into account by

adding supplementary terms to equation (2.1.1a). A variety of methods in this
spirit has been developed, starting from Peskin’s immersed boundary method
[130, 131]. The approach chosen here is the volume penalization method,
which is physically motivated by replacing the solid obstacle by a permeable
medium with small permeability Cη. The penalized problem reads

∂tu + ω× u = −∇Π + ν∇2u + Fp −
χ

Cη
(u− us) (2.1.2a)

∇ · u = 0 (2.1.2b)

u (x, t = 0) = u0 (x) (2.1.2c)

Its distinctive feature is the existence of a rigorous convergence proof [4,
18] which shows that the solution of the penalized Navier–Stokes equations
(2.1.2a-2.1.2c) tends for Cη → 0 indeed towards the exact solution of the
Navier–Stokes equation imposing no-slip boundary conditions (2.1.1a-2.1.1d),
with a convergence rate of O

(√
Cη

)
. The parameter Cη should thus be cho-

sen to a small enough value. The mask function χ is defined as

χ (x, t) =

{
0 if x ∈ Ω f

1 if x ∈ Ωs
. (2.1.3)

In anticipation of the application to moving boundaries, we note that we will
replace the discontinuous χ-function by a smoothed one, with a thin smooth-
ing layer centered around the interface. The mask function encodes all geo-
metric information of the problem, and eqns. (2.1.2a-2.1.2c) do not include
boundary conditions; at the outer boundary ∂Ω, periodicity is assumed.

Based on the physical interpretation of Cη as permeability, it is intuitively
clear that Cη must be set small enough for the penalization method to yield
reasonable results which is reflected by the convergence rate of O

(√
Cη

)
.

However, the choice of Cη is subject to constraints, as the penalized equations
are discretized and solved numerically. The modeling error of order O

(√
Cη

)

should be of the same order as the discretization error [122]. It is first noted
that in eqn. (2.1.2a), Cη has the dimension of a time. It is instructive to
put the nonlinear, viscous and pressure terms aside for a moment. One is
then left with ∂tu = −u/Cη inside the solid, with the obvious solution u =

u0 exp
(
−t/Cη

)
. Thus, Cη can be directly identified as the relaxation time.

Interfering with the time step ∆t, usually implying ∆t/Cη < const, where the
constant depends on the time marching scheme, this simple fact has important
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consequences for the numerical solution. It indicates that a good choice for
Cη is not only “small enough”, but also “as large as possible”. Further insight
in the properties of the penalization method can be obtained considering a
laminar channel flow (Poisseuille flow) in its penalized version, yielding

−∂x p + ν∂yyu = 0 in Ω f

−∂x p + ν∂yyu− u

Cη
= 0 in Ωs.

A sketch of this setup is given in 2.1.2 (left). Assuming ∂x p = P = const, we
look for a solution with continuous velocity and derivatives at the fluid–solid
interface. In the solid domain, the solution is

u (y) = P δη

(
a
(

ey/δη + e−y/δη

)
+ δ

(
ea/δη − e−a/δη

))

ea/δη − e−a/δη

where δη =
√

νCη has been introduced. The velocity on the wall is u (y = a) ≈
2δ. The solution of the problem is illustrated in figure 2.1.2 (right). It shows
the solution for two values of Cη. A boundary layer of thickness δη forms in-
side the solid region Ωs, which has also been pointed out in [18], and a small
slip velocity is found right on the channel walls, which has been demonstrated
in greater detail in [122]. At this stage, it should be noted that the solution of
the Poisseuille flow is in fact the solution of a steady heat equation problem.
Thus, a more physical interpretation can be given in this case. The viscous
term, active in both Ωs and Ω f , imposes a viscous flux over the boundary
∂Ωs, which is rapidly consumed by the penalization term, which acts as a
sink. The competition between viscous transport and the penalization damp-
ing determines the boundary layer thickness. This finding also illustrates that
penalization works better for higher Reynolds numbers, and that it will re-
quire very small values of Cη in the Stokes regime. It should however be
pointed out that in realistic flow configurations, the thickness of the penaliza-
tion boundary layer is not solely determined by the viscosity, but also depends
on the pressure and the employed projection scheme.

When increasing the resolution, the number of points per thickness K =

δη/∆x should be kept constant, which implies slaving Cη ∝ (∆x)2, consistent
with [122], where the penalized Laplace and Stokes operators were analyzed
analytically. With the scaling for Cη, one still has to choose the constant K. In
fact, for any value of K, the method will converge with the same convergence
order, but the error offset can be tuned [46]. As this tuning is discretization
specific, it will be discussed later.
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Figure 2.1.2 – Penalized Poisseuille flow. Domain definitions (left) and exact solu-
tion (right) for a large (red) and a small (blue) value of Cη . The inset shows a zoom
to illustrate the penalization boundary layer. Units are arbitrary.

2.2 Model equations in two dimensions

Simulations in a two-dimensional space are orders of magnitude faster to
compute, and still they can give valuable insight in some phenomena. In the
2D case, the curl of u, the vorticity, has only one non-vanishing component, it
is thus a scalar. Taking the curl of eqn (2.1.2a) yields the vorticity transport
equation

∂tω + (u · ∇)ω = ν∇2ω−∇×
(

χ

Cη
(u− us)

)
. (2.2.1)

The velocity can be determined as u = ∇⊥ψ, introducing the streamfunction

ψ, which satisfies ∇2ψ=ω, and ∇⊥ =
(
−∂y, ∂x

)T as the orthogonal gradient.
The velocity u is defined up to an irrotational contribution that can be forced
independently, i.e., u = ∇⊥ψ + U. Since the only periodic potential flow is a
constant velocity, U = u∞ can be interpreted as the mean velocity. It should
be noted that the pressure gradient ∇Π drops out of eqn. (2.1.2a) as its curl
is identically zero.

2.3 Penalization method for moving and flexible

obstacles

The volume penalization method as discussed so far assumes a discontinuous
mask function in the form of eqn. (2.1.3). When applying the method to a
non-grid aligned body, for example a circular cylinder, the mask function ex-
hibits the “staircase” effect, which geometrically approximates the boundary
to first order in ∆x. Results for stationary cylinder using the discontinuous
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mask function are acceptable [144, 146], but spurious oscillations in the case
of moving ones are reported [87]. The reason is that the discontinuous mask
can be translated only by integer multiples of the grid spacing, and this jerky
motion causes large oscillations in the hydrodynamic forces. Kolomenskiy and
Schneider [87] proposed an algorithm to shift the mask function in Fourier
space instead of physical space. To see how this technique basically works,
and why we cannot use it in the present work, consider a pure translation
motion. Basically, the approach consists in solving a transport equation for
the mask function,

∂tχ + us · ∇χ = 0 , (2.3.1)

using the same discretization as for the Navier–Stokes equation. The gradient
operator being diagonal in Fourier space, this equation can be solved exactly.
Thus, the obstacle at time tn is described by

χ (x, tn) = F−1
(

e−ik·ustF
(

χ
(

x, t0
)))

. (2.3.2)

Using equation (2.3.2) the obstacle can be displaced by less than one grid
point. Always using the initial mask, χ

(
x, t0), avoids error accumulation. For

general us, including arbitrary rotations, the motion can be decomposed in a
sequence of one dimensional transformations [87]. Hence, arbitrary motion
can be simulated with this approach. In order to avoid Gibbs oscillations,
the discontinuous χ-function can be smoothed by solving a few steps of a
diffusion equation prior to the simulation.

In the present work, we employ a different approach, for two reasons. First,
as visible in eqn. (2.3.2), displacing the mask in Fourier space involves (addi-
tional) Fourier transforms, which are computationally expensive. It can also
only be applied on equidistant grids, as required by the Fourier transform.
Second, and more important, the Fourier approach cannot be used for flexi-
ble obstacles, since the diagonality of the transport operator is lost.

The idea in this work is to directly assume the mask function to be smoothed
over a thin smoothing layer, which has also been used in [87], but for a
different reason. To this end, we introduce the signed distance function δ(x, t)
[127], which in the case of a cylinder of radius R0 centered around x0 (t)
simply reads

δ (x, t) = ‖x− x0 (t)‖2 − R0.

Then, the mask function can be computed from the signed distance, for ex-
ample using

χ (δ) =





1 δ ≤ −h
1
2

(
1 + cos

(
π δ+h

2h

))
−h < δ < +h

0 δ > +h

(2.3.3)
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Figure 2.4.1 – Computation of hydrodynamic force.

where the semi-thickness of the smoothing layer, h, is used. It is typically
defined relative to the grid size, h = Csmth∆x, thus eqn. (2.3.3) converges to
a Heaviside step function as ∆x → 0. Nonetheless, it can be translated by less
than one grid point, and then be resampled on the Eulerian fluid grid. Eqn.
(2.3.3) is not an unique choice, in fact, it is rather arbitrary. In [44, 46] we
used

χ (δ) =
1
2

(
erf
(
− δ

h

)
+ erf

(
δ

h

))
(2.3.4)

with h = Csmth∆x max (∂χ/∂δ) = Csmth∆x√
π

(exp (−4)− 1) instead. This choice

is motivated by the fact that the Fourier coefficients of (2.3.4) decay faster,
representing thus a better compromise of support width in physical and Fourier
space. However, the solution of eqns. (2.1.2a-2.1.2c) is in C1 at best, which
is the reason why eqn. (2.3.3) turns out to be sufficient.

2.4 Hydrodynamic forces and moments

When simulating fluid–structure interaction problems, one is usually inter-
ested in the hydrodynamic forces (e.g., drag and lift) and moments (i.e., yaw,
pitch, roll). It is noted that the penalization term in eqn. (2.1.2a) has the
dimension of a force, still, the intuition of simply integrating it over the ob-
stacle, as done in [4], is correct only if the obstacle is at rest or in steady
motion. In the case of arbitrarily moving obstacles, additional terms occur, as
first pointed out in [167]. The purpose of this section is to give a clear deriva-
tion of the expressions for the force and moment. The force F on an obstacle is
defined as the surface integral of the stress tensor over the obstacle’s surface:

F =

˛

∂Ωs

σ · n dγ. (2.4.1)

σ = −∇p +
ν

2

(
∇u + (∇u)T

)
(2.4.2)
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It can, in principle, be computed using eqn. (2.4.1). However, if one is inter-
ested in the integral forces only, as opposed to the local distribution, volume
integration can be employed, which is computationally more efficient than
surface integration. We consider a control volume V, that may or may not
coincide with an obstacle, as illustrated in figure 2.4.1. This way, we include
both the strategy of integrating only over Ωs employed by Uhlmann [167]
and the idea of integrating a volume surrounding, but excluding the obstacle,
as proposed by Bergmann and Iollo [11]. It is useful to rewrite eqn. (2.1.2a)
with the stress tensor σ and the non-linear term in convection form, yielding

∂tu + u · ∇u = ∇ · σ− χ

Cη
(u− us) (2.4.3)

Integrating (2.4.3) over V yields
ˆ

V
(∂tu + u · ∇u)dV =

ˆ

V
∇ · σ dV −

ˆ

V

χ

Cη
(u− us)dV,

and applying Gauss’ theorem gives the expression for the force acting on the
control volume V

F =

˛

∂V
σ · n dγ =

ˆ

V

χ

Cη
(u− us)dV +

ˆ

V
(∂tu + u · ∇u)dV. (2.4.4)

If we now consider V = Ωs, then F is directly the force acting on the ob-
stacle. The second term on the left hand side is labeled unsteady correction.
Rewriting it with the material derivative yields the same form as in [167]:

F =

ˆ

Ωs

χ

Cη
(u− us)dV +

ˆ

Ωs

Du

Dt
dV

The velocity inside the obstacle is equal to us in a very good approximation,
and thus the final expression for the force is

F =

ˆ

Ωs

χ

Cη
(u− us)dV +

d
dt

ˆ

Ωs

usdV. (2.4.5)

Eqn (2.4.5) is the one used in the present work. The unsteady correction
can, for rigid bodies, be computed as Vsu̇s, as described in [167], where Vs

is the obstacle’s volume and u̇s its acceleration. For flexible obstacles, the
integral is evaluated numerically. If the obstacle is at rest, eqn (2.4.4) reduces
to F =

´

V
χ
η udV, which is the classical formula given by Angot et al. [4].

For completeness, we also consider V to only surround the obstacle, thus
excluding Ωs [11]. The surface integral in eqn (2.4.4) consists then of two
parts, and χ ≡ 0:

˛

∂Ωs

σ · n dγ =

˛

∂V
σ · n dγ−

ˆ

V
(∂tu + u · ∇u)dV
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where the remaining surface integral on the left hand side is evaluated on a
rectangle coinciding with the grid.
The situation is similar for the torque acting on the body. It can be computed
using

m =

˛

∂V
r× (σ · n) dγ =

ˆ

V
r× (∂tu + u · ∇u)dV +

ˆ

V
r× χ

Cη
(u− us)dV

(2.4.6)
where r = x − xc is the position vector relative to the point of reference.
Again the unsteady correction appears, which reduces to

ˆ

V
r× (∂tu + u · ∇u)dV = JcΘ̈c

in the case of rigid objects. Therein, Jc is the geometrical moment of inertia
and Θ is the angle of rotation.

2.5 Wake removal techniques

The penalized Navier–Stokes eqns (2.1.2a-2.1.2c) do, by principle, not re-
quire boundary conditions. It is however possible to supplement them with
in- and outflow boundary conditions, and model only the immersed obsta-
cle with penalization. It may seem surprising, however, that suitable open
boundary conditions for incompressible flows are unknown to this day. For
example, the open boundary conditions mini-symposium in 1991 is reported
to have been “an exercise in frustration” [27, 141]. The general difficulty is
that domain truncation is essentially nonphysical, and that applies even to
compressible flows, where characteristics can be used to model outflow con-
ditions [149]. An intuitive example where posing an outflow condition is
difficult is the case of a traveling vortex pair. As soon as the first vortex disap-
pears, i.e., it crosses the outflow, the second one looses the velocity induced
by its partner. Outflow conditions thus require modeling to some extend the
structures outside the computational domain. In this spirit, Gautier et al, for
example, simulated the flow past a cylinder at Re = 40 with an immersed
boundary method, and imposed the potential flow solution as far-field inflow
condition [59].
Here, we follow an alternative approach, and employ a periodic discretization
of eqns. (2.1.2a-2.1.2c). In such a periodic setting, the wake re-enters the do-
main, which is an undesired artifact. To overcome it, a supplementary sponge
(sp) penalization term can be added to the vorticity-velocity eqn. (2.2.1), to
gradually damps the vorticity [44, 46]. The equation then reads

∂tω + (u · ∇)ω = ν∇2ω−∇×
(

χ

Cη
(u− us)

)
− χsp

Csp
(ω−ω0) . (2.5.1)
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The desired vorticity profile ω0 is usually zero. The sponge penalization pa-
rameter Csp is usually set to a much larger value than Cη, typically Csp =

10−1. The larger value and its longer relaxation time ensure that if a traveling
vortex pair enters the sponge region, the leading one is not dissipated too
fast, because it otherwise could leave the partner orphaned in the domain. In
primitive variables and three spatial dimensions, we find for the same term

∂tu + ω× u = −∇Π + ν∇2u− χ

Cη
(u− us)−∇×

(
χsp

Csp
(ω−ω0)

)

∇2 , (2.5.2)

since ∇ · u = 0, u takes the form u = ∇× ψ and the vorticity is ω = ∇× u =

∇×∇×ψ = −∇2ψ, thus for each component ψi of the streamfunction ψ, we

solve a Poisson equation ∇2ψi = ωi, and afterwards, the curl of the stream-
function yields the velocity. By construction the sponge term is divergence-
free, which is important since it otherwise would contribute to the pressure,
which in turn would be modified even in regions far away from the sponge.
Moreover, it leaves the mean flow untouched. This technique is adapted to
spectral discretizations, since the solution of 3 Poisson problems would be
prohibitively expensive in a finite-difference setting.

Dirichlet conditions on the velocity can be imposed directly with the volume
penalization, which applies for example to channel walls. For simulations
in a uniform, unbounded free-stream, we use both techniques; in a small
layer at the domain borders, the Dirichlet condition u = u∞ is imposed with
the same precision as the actual obstacle, and a preceding, thicker vorticity-
sponge layer ensures that the upstream influence is minimized [46]. The
sponge technique is similar to the “fringe regions” proposed by Schlatter et
al [143]. However, they used a velocity sponge, which lacks the favorable
properties of the vorticity sponge described here.

2.6 Mean flow equations

The mean flow, that is the zeroth Fourier mode, has a special role in our
framework. In the vorticity streamfunction formulation, see section 2.2, the
mean flow has to explicitly added, since the inversion of the Poisson eqn
∇2ψ = ω is only defined up to a constant. The mean flow u∞ can be forced
independently, for example to a constant value.

In primitive variables, eqn. (2.1.2a), we can derive an ordinary differential
equation for u∞ by spatially averaging equation (2.1.2a) (i.e., we integrate
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over the torus T
3),

ˆ

T3
∂tu dx +

ˆ

T3
ω× u dx

︸ ︷︷ ︸
=0

= Fp −
ˆ

T3
∇q dx

︸ ︷︷ ︸
=0

+ ν

ˆ

T3
∇2u dx

︸ ︷︷ ︸
=0

−
ˆ

T3

χ

Cη
(u− us) dx (2.6.1)

du∞

dt
= Fp −

ˆ

V

χ

Cη
(u− us) dx. (2.6.2)

in the absence of an external pressure gradient Fp, the mean flow acceleration
is thus determined by the drag force. If we set u∞ to a fixed value, we thus
imply an external pressure gradient that always compensates the drag force
[46].

When looking for a steady cruising speed, achieved for example by a swimmer
model, it is useful to modify eqn. (2.6.2), to take into account a fixed fluid
mass. The equation then becomes

du∞

dt
=

〈
− χ

Cη
(u− us)

〉

mfluid
(2.6.3)

where 〈〉 denotes spatial average. The acceleration of the mean flow then
does no longer depend on the domain size, and a smaller value of mfluid can
be set to reach the steady state faster [47].

2.7 Discretization in space

The model equations described so far can be discretized with any numeri-
cal scheme. Ghaffari et al., for example, used compact finite differences and
studied two–dimensional models of swimming fish [65], while Boiron et al.
employed a finite volume discretization and studied supersonic flows inter-
acting with bluff bodies [14]. Even Chebyshev collocation method have been
used by Pasquetti et al. [128], which involve comparatively high computa-
tional cost when solving Poisson’s equation.

In the present work, we will use a Fourier pseudospectral discretization. In
two spatial dimensions, this approach has been used quite extensively, for ex-
ample to compute flows past bundles of cylinders [144, 146], or the decaying
turbulence in circular containers [145]. The general idea is to represent vari-
ables as truncated Fourier series, thus in three dimensions we have for any
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quantity q (velocity, pressure, vorticity)

q (x, t) =
Nx−1

∑
kx=0

Ny−1

∑
ky=0

Nz−1

∑
kz=0

q̂ (k, t) exp (ιk · x) x ∈ [0, 2π)3

where k =
(
kx, ky, kz

)T is the wavevector, ι =
√
−1 and q̂ are the discrete

complex Fourier coefficients of q. As the variable q is, in the present appli-
cation, always real-valued, its Fourier coefficients are Hermitian symmetric.
Therefore, we store only half as many Fourier coefficients q̂ as we have grid
points q, still, as complex numbers consist of two real numbers, q̂ and q re-
quire the same amount of memory. The Fourier coefficients can be computed
with the fast Fourier transform (FFT). This algorithm is generally accredited
to Cooley and Tukey [26] and, reducing the order of complexity from N2 to
N log N, it is one of the most widely used numerical recipe throughout virtu-
ally all fields of science. Its widespread use is also reflected in the existence of
highly tuned numerical libraries; here, we use P3DFFT in the 3D case [129]
and FFTW in the 2D case [55]. In the case of Fourier discretizations, most (in
our code, 80%) of the computational effort is spend on FFTs, and thus these
codes are easier to optimize than others.

Once the Fourier coefficients are known, computing derivatives is greatly sim-
plified. The gradient of a scalar can for instance be obtained by multiplying
with the wavevector and the complex unit, ∇̂q = ιkq̂. The Laplace operator
becomes a simple multiplication by − |k|2, it is thus diagonal in Fourier space.
When using, e.g., finite differences, the dominant part of computational ef-
forts is, in incompressible flows, spent on solving Poisson’s equation in every
time step [78]. This is a strong motivation to employ a Fourier discretization,
as inverting a diagonal operator becomes a simple division. Inserting the trun-
cated Fourier series into the model equations and requiring that the residual
vanishes with respect to all test functions (which are identical with the trial
functions exp (ιk · x) ) yields a Galerkin projection and results in an evolution
equation for the Fourier coefficients of the velocity. The nonlinear and penal-
ization terms contain products, which become convolutions in Fourier space.
To facilitate computation, the products are calculated in physical space. This
last introduces aliasing errors which are virtually eliminated by the 2/3 rule
[17], meaning that only 2/3 of the Fourier coefficients are retained. Such a
mixture of spectral and physical computations is generally labeled "pseudo-
spectral" and is, when de-aliased, equivalent to a Fourier-Galerkin scheme.

In the turbulence community, Fourier spectral methods are the predominant
tool, starting with the pioneering work of Orzag and Patterson (1972) [123]
with a resolution of 323 points, until the simulations as big as 40963 by Ishi-
hara et al. in 2003 [76, 77] or 81923 by Yeung et al. [187].
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2.8 Discretization in time

The spatially discretized equations describing two and three dimensional flows
can be advanced in time in either physical or Fourier space, and the choice
is made by counting the necessary Fourier transforms. Time stepping Fourier
space is found to be more efficient.

The discretization in time depends on the viscosity; for low Reynolds number
flows, the viscosity should be treated in an implicit fashion to avoid the time
step restriction ∆t < A∆x2/ν (e.g., A = 0.5 for the Runge–Kutta 4 scheme).
Two-dimensional flows are somewhat limited in terms of Reynolds numbers,
since as soon as Re is high enough, three-dimensional effects occur.

2.8.1 Two-dimensional flows

For two-dimensional flows, we discretize the vorticity-velocity eqn. (2.2.1).
Denoting the Fourier transformation with F , i.e., ω̂ = F (ω), we can write
the semi-discrete version of equation (2.2.1):

∂tω̂ = −F
(

u · F−1 (ιkω̂)
)
− ν |k|2 ω̂− ιk×F

(
χ

Cη
(u− us)

)
(2.8.1)

û =
ιk⊥

|k|2
ω̂ + u∞, |k| 6= 0 (2.8.2)

When discretizing eqn. (2.8.1) in time, we can again enjoy the diagonality
of the Laplace-operator to integrate the diffusive term exactly. This method
is known as integrating factor technique [17, 132]. To simplify the notation,
we rewrite equation (2.8.1) as

∂tω̂ + ν |k|2 ω̂ = f̂ (ω̂) (2.8.3)

we can easily find the solution of the homogeneous problem. The solution of
the complete equation (2.8.3) then reads

ω̂
(

k, tn+1
)

= ω̂ (k, tn) exp
(
−∆tν |k|2

)
. . . (2.8.4)

+

ˆ tn+1

tn
exp

(
−τν |k|2

)
f̂
(

ω
(

x, tn+1 − τ
))

dτ.

The Duhamel–integral on the right hand side is discretized with an explicit
Adams–Bashforth scheme of second order accuracy. The exact treatment of
the diffusive term avoids introducing an additional stability condition on the
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time step ∆t. On the other hand, the penalty term introduces additional nu-
merical stiffness and thus imposes a restriction on the time step. Using this
time marching scheme, the stability condition for the time step is

∆t ≤ min
(

Cη , CFL
∆xα

umax

)
, 0 < CFL < 1 (2.8.5)

where α = 4/3 [147]. Further details about this time marching scheme and
the spatial discretization can be found in [87, 144].

2.8.2 Three-dimensional flows

For three-dimensional flows, we employ two different schemes, depending
on the Reynolds number. Low-Reynolds numbers are treated with an Adams-
Bashforth scheme, which is similar to the one used in two-dimensional flows
and treats the viscous term in an exact fashion. Higher Reynolds number
simulations, where the CFL condition limits the time step, are treated with
the classical fourth order Runge-Kutta scheme, treating all terms explicitly.

As discussed previously, the pressure in eqn. (2.5.2) is not a state variable,
but rather a Lagrangian multiplier. We can derive the defining equation by
taking the divergence of eqn. (2.5.2), i.e., dot-multiplying by ∇:

∇ · (∂tu + ω× u) = ∇ ·
(
−∇Π + ν∇2u− χ

Cη
(u− us)

−∇×

(
χsp

Csp
(ω−ω0)

)

∇2


 (2.8.6)

∇2Π = ∇ ·
(
−ω× u− χ

Cη
(u− us)

)
(2.8.7)

Thus, we apply a projection to the right hand side of the (penalized) Navier–
Stokes equations, which is different from the classical splitting projection
methods [68], where the velocity field obtained after a preliminary time step
is projected. Denoting the nonlinear term with N , the penalization term with
P and the sponge term with S , the right hand side reads

R̂HS = N̂ + P̂ − ν |k|2 û + Ŝ + ιk

[
ιk

|k|2
·
(
N̂ + P̂

)]
. (2.8.8)

The right hand side (2.8.8) is thus divergence free, but it is still important to
remark that one should also start with an divergence-free initial condition. It
is further worthwhile to point out that the penalization term is diagonal in
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physical space and full in Fourier space. However using an integrating factor
in physical space, to overcome the associated stiffness (cf section 2.1), is not
possible, since the χ-function is not continuous.

2.9 Convergence properties

We now consider a simple academic flow, the Couette flow between two coax-
ial cylinders, to see how the numerical method works in practice. Let the
cylinders have radii R1 = 0.5 and R2 = 1.0. The inner one rotates with an
angular velocity Ω. The exact solution for the steady state is an azimuthal
velocity field [113]:

uΘ (r) = −Ω
R2

1

R2
2 − R2

1
r + Ω

R2
1R2

2

R2
2 − R2

1

1
r

. (2.9.1)

Our numerical solution is obtained using a [0, 2.5] × [0, 2.5] domain and a
viscosity of ν = 0.1. A discontinuous mask function is used. The initial con-
dition is taken to equal the exact solution, and the computation is stopped
when the time derivatives of both L2 and L∞ norms are smaller than 10−4,
which corresponds to a final time of around T = 1.0. This test case being
computationally cheap, we can afford to test five resolutions, 322, 642, 1282,
2562 and 5122 with 30 values of Cη each, distributed logarithmically equidis-
tant in Cη =

[
10−6, 10−1]. The time step is ∆t = min

(
10−4, Cη

)
to keep the

time discretization error negligible, and the Adams-Bashforth scheme with
integrating factor is used.

Figure 2.9.1 (left) illustrates the relative error in L2 norm as a function of Cη

and the spatial resolution. It exhibits the coupling between the spatial res-
olution and the penalization parameter. First, one observes the

√
Cη slope

predicted from theory [4] and the saturation of the error for small Cη. The
behavior is consistent with the loss of the C1 regularity of the exact solution
of the penalized problem in the limit of small Cη. For each resolution, one
can identify an optimal value of Cη, that minimizes the error, consistent with
[122]. In view of the connection between Cη and both the spatial and tem-
poral discretization, it is clear that the strategy of choosing some fixed, small
value of Cη is sure to give sub-optimal results. Instead, one should keep the
number of points per thickness of the penalization boundary layer constant,
K =

√
νCη/∆x, as discussed in section 2.1. Figure 2.9.1 right illustrates the

spatial convergence for different values of K. All curves exhibit first- to second
order convergence, but the choice of K modifies the error offset. The smallest
error is obtained for K = 0.128, and in all cases, the boundary layer is thus
under-resolved (K < 1).
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Figure 2.9.1 – Relative L2 error
∣∣∣∣uex − uN

ε

∣∣∣∣ / ||uex|| for the Taylor-Couette flow.

Left: convergence with respect to Cη . Resolutions are 322 (�), 642 (©), 1282 (+),

2562 (∇) and 5122 (⋆). The dashed line marks the
√

Cη slope. Right: convergence

with respect to ∆x, for K =
√

νCη/∆x = const, symbols indicate K = 0.405 (�),
K = 0.064 (©), K = 0.091 (+) and K = 0.128 (⋆). Note an intermediate value
K yields best results. Dashed lines indicate first (top) and second (bottom) order
convergence.

At this stage we should point out that the choice of Cη does not exclusively
depend of the viscosity. If so, it would be possible to give more sophisticated
estimates for its determination by considering the penalized heat equation.
For small values of Cη, it is in addition the projection to the incompressible
manifold that regularizes the loss of C1 regularity, since the divergent part
of the penalization term is canceled by the contribution to the pressure, eqn.
(2.8.7). It is, therefore, likely to be impossible to give a universal way to
choose Cη. However, we always found Kopt between 0.1 and 0.4 for a large
variety of validation cases, not all of which are reported in this manuscript,
and consider K = 0.1, . . . , 0.4 as a recommendation for usage in practice.

2.10 Concluding remarks

The proposed numerical method relies on the volume penalization and a
Fourier pseudospectral discretization. We outlined the essential properties
of this combination of methods, especially the parameter of the volume pe-
nalization method, Cη, has been discussed in detail. We provided evidence
that one in fact chooses K =

√
νCη/∆x = const instead. Care must be taken

however, since Cη is also a time scale. Thus, when it comes to turbulent flows
near the walls, Cη should roughly not exceed the shortest turbulent times
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scales by too much, even though the viscous sub-layer will likely prevent the
smallest eddies from reaching the wall.

The time step of the proposed time marching methods must not exceed Cη,
which, with K = const, implies ∆t =

[
K2/ν

]
∆x2. The viscosity thus deter-

mines the relative influence of the penalization, since for ν small, the time
step is determined by the CFL condition, and we conclude therefore that the
method works better for lower viscosities ν.

All numerical codes used in this work are written in FORTRAN95 and are
freely available on the internet. The proposed framework is intended to be
applicable also for higher Reynolds number flow, for which small spatial and
temporal vortical structures appear. To resolve these scales, high resolution
and therefore the usage of high-performance computers is required. To this
end, our code is designed to compute on massively parallel machines with dis-
tributed memory architectures. The parallel implementation is based on the
MPI protocol. The FFTs are computed using the P3DFFT library [129], which
provides a parallel data decomposition framework, and FFTW [55], which
is used for the one–dimensional Fourier transforms inside P3DFFT. The flow
variables are stored on the three–dimensional Cartesian computational grid.
Each MPI process only holds a portion of the total data, and the parallel de-
composition is performed on at most two indices, i.e., a pencil decomposition
is used. The x-direction is not split among processes, the code can thus run
on NyNz processes at most. This limitation is however not of practical im-
portance, since NyNz usually exceeds the number of available CPUs. Some
details about the three-dimensional code FLUSI1 are given in Appendix A

1The FluSI (acronym for FLUid Structure Interaction) code is freely available for non-
commercial use under https://github.com/pseudospectators/FLUSI
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Part II

Fluid-structure interaction
with rigid obstacles





Chapter 3

Virtual insects: modeling and
validation

The content of this chapter is adapted from [45].

3.1 An introduction to insect flight

Insect fly by flapping their wings, a mechanism entirely different from human
aircraft. Their wings are basically flat without a notable aerodynamic pro-
file (since the wings deform while flapping, this is only strictly true on the
ground) and operate typically at high angle of attack. If a flat plat in steady
flow is operating at this angle of attack, it is not even close to producing
enough lift to balance the weight, which led to the widespread myth “insects
cannot fly, according to physics” [39], although it is clear that it is not the
insect doing something wrong.

The fact that they do fly implies that they use unusual and potent aerodynamic
strategies for force generation. The first mechanism was discovered by Weis-
Fogh in 1973 [176] and is termed ‘clap–fling–sweep’. It is mainly encountered
in small insects, for example in Encarsia formosa, the chalcid wasp (< 1 mm
body length) [85]. The insect brings its wings closely together (‘clap’), then
opens a gap in V-shape (‘fling’) and then sweeps the wing apart. During the
fling, strong vortices are generated, providing enhanced force production.
The kinematic pattern is illustrated in figure 3.1.1. The clap–fling–sweep
mechanism was an important result, but it could explain only some aspects of
insect flight. Especially for larger specimen, the existence of a leading edge
vortex (LEV) was hypothesized, and in 1996 Ellington et al. [39] presented
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Figure 3.1.1 – Illustration of the clap (a) fling (b,c) sweep (d) mechanism, figure
adapted from Weis-Fogh 1973 [176].

the first conclusive evidence for this hypothesis. The LEV is typically attached
to the wing, and at each half-stroke, a new vortex is generated. Spanwise flow
along the wing has been suggested as stabilization mechanism, see e.g., [93].
Figure 3.1.2 shows schematic illustration of the vortical system, consisting of
the LEV and a tip vortex that constitutes the wake. Dickinson et al. [29] used
a flapping wing robot in mineral oil, operating at the Reynolds number of a
fruit fly, and found three distinct mechanisms, delayed stall, rotational circu-
lation and wake capture. Delayed stall is associated with the formation of the
LEV, and rotational circulation refers to the fact that between half strokes,
the insect necessarily rotates its wing, which in turn contributes to the total
circulation and thus force production. The relative timing of this rotation
could, according to [29], be used to modulate the force production by either
rotating before, during or after stroke reversal. The stroke cycle-averaged lift
coefficient can thus be modified by a factor of approximately 1.7 [29]. How-
ever, the significance of this mechanism for lift enhancement in real animals
is not clear because recent 3D reconstruction of wing motion in freely flying
1.0 mg fruit flies suggests kinematic patterns at which rotational circulation
is minimal at each half stroke reversal [151].

Finally, while flapping back and forth the wing could interact with its own
wake from the previous half stroke, which is referred to as wake capturing.
This mechanism also depends on the stroke trajectory, as shown in [92]. Wake
capturing is particularly relevant for insects with four independent wings, like
dragonflies, since the small distance between fore- and hindwing necessarily
invokes wing–wake interactions, which in turn also offers opportunities for
control [106] .

The key to insect flight is their wing kinematics, which varies tremendously
between species [36], airspeed [33] and even between individual strokes of
the same animal [154]. Earlier studies tethered the insect in a wind tun-
nel and recorded the wing motion with high-speed cameras, until evidence
was presented [154] that even though insects do flap when being tethered
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Figure 3.1.2 – Sketch of the leading edge and tip vortices, figure adopted from Lentink
and Dickinson [93]
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in an axial flow, this flapping is strikingly different from what they do in vol-
untary free flight [57]. Nowadays, insects are thus filmed in free flight for
kinematic reconstruction [56, 190]. The flapping frequency decreases with
increasing size, from 400 Hz in the tiny calcid wasp Encarsia formosa [176],
218 Hz in fruit fly Drosophila melangogaster [57], 152 Hz in bumblebees Bom-

bus trerrestris [33] to 26 Hz for a hawkmoth [96, 97]. The mosquito Aedes

aegypti is exceptional in that it flaps at 800 Hz [74].

In hovering flight for many insects, the stroke plane is almost horizontal, i.e.,
the wings flap in a plane approximately parallel to the ground. Exceptions
are for example the hoverflies Episyrphus balteatus, with an inclination angle
of more then 30◦ with respect to horizontal [36], and dragonflies [20]. The
hovering flight of a fruit fly is illustrated in figure 3.1.3, showing the typical
features regarding body posture, horizontal stroke plane and high angles of
attack. The kinematics are derived from [57], and the precise definition of
positional, feathering and elevation angle will be given in section 3.2. In
forward flight, the stroke plane is effectively tilted with respect to horizontal,
as is the body. The body posture also depends on the forward flight speed,
as experiments on honeybees suggest. The bees have been reported to hold
their abdomen higher with increasing airspeed, and the authors of the study
suggest that this is a mechanism for drag reduction [99, 161].

Flapping flight allows for great maneuverability. Fruit flies, for example, reg-
ularly perform maneuvers termed ‘saccades’, which are changes in the flight
direction by 90◦ or more, over a timescale of a few wing beats (40 ms) only
[56]. Surprisingly, these maneuvers are associated with only subtle differ-
ences in the kinematics. Even more impressive maneuvers have been ob-
served in fruit flies when they fear a predator, both during an escape take off
[190] and in free flight [118]. Attempts to synthesize stereotypical steering
patterns, e.g., to induce a yaw rotation, have for instance been proposed in
[30]. However, the apparent price to pay for this great maneuverability in
flapping flight seems to be intrinsic instabilities that require constant control
[138, 139, 183].

The Reynolds number of an insect, of great relevance for the fluid dynamics,
is commonly defined as

Re =
UtipR

ν
=

2Φ f R · cm

ν
,

where Utip is the mean wingtip velocity and equal to 2Φ f R, and cm is the
mean chord length defined as A/R, where A is the wing’s surface. This
Reynolds number is convenient since it involves many important parameters
of the insect (unlike, e.g., Re f = f 2R/ν). For a fruitfly, Re ≈ 130 [103], while
a bumblebee bombus terrestris operates at about 2000 [43]. Despite their
remarkably high wingbeat frequency, mosquitoes like Aedes aegypti operate at
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low Reynolds numbers, typically 75, owing to their reduced stoke amplitude
[74]. Hawkmoths are larger specimen and their Reynolds number is typically
6300 [96], which is of the same order of magnitude as hummingbirds [175].

3.2 Virtual insects

In the following, we describe the virtual insect framework used in this work in
detail. We remind the modularization of the framework which means that the
previously described fluid module can take any obstacle into account through
the volume penalization method, i.e., through the mask function χ and the
solid velocity field us. The insect module is thus concerned with creating
these latter functions on the Eulerian fluid grid by using the signed distance
function. Our virtual insect consists of a body and two wings, all of which are
performing solid body rotations around three axis. Therefore, we will make
excessive use of the rotation matrices

Rx (ξ) =




1 0 0
0 cos ξ sin ξ
0 − sin ξ cos ξ


 Ry (ξ) =




cos ξ 0 − sin ξ
0 1 0

sin ξ 0 cos ξ




Rz (ξ) =




cos ξ sin ξ 0
− sin ξ cos ξ 0

0 0 1




to define the different reference frames

x(g) global x(b) body x(w) wing x(s) stroke plane ,

in which the geometry is defined. As described above, the mask function is
constructed in each evaluation of the right hand side as a function of the
signed distance function, χ (x) = χ (δ (x)), according to eqn. (2.3.3).

3.2.1 Body system

The insect’s body is responsible for a major part of the total drag force. Ear-
lier numerical contributions, like the one by Ramamurti and Sandberg [133],
neglected the body to simplify the problem. For body fitted grids, the pres-
ence of the body introduces a significant complication. One way to deal with
this complexity is the use of overset grids, where a mesh for each solid part
(body, wings) is defined. These grids overlap and require interpolation and
synchronization, which is complicated on distributed memory architectures.
This method is employed, for example, by the group of Hao Liu [96]. The pe-
nalization method used in this work allows using arbitrarily complex bodies,
including legs and antennae.
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Figure 3.2.1 – A simple model insect (“Jerry”). Definitions of the body angles γ
(yaw), β (pitch), ψ (roll) and the anatomical stroke plane angle η, definitions of
the wing coordinate systems and the wing angles θ (deviation), φ (position) and α
(feathering).All angles are shown with positive sign.
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The insect’s body is described by logical center x
(g)
cntr, the translational velocity

u
(g)
cntr and the body angles β (pitch), γ (yaw) and ψ (roll), see figure 3.2.1.

The center point x
(g)
cntr does not necessarily coincide with the center of gravity,

it is rather an arbitrary point of reference. A point x(g) in the global coordi-
nate system can be transformed to the body system using the following linear
transformation

x(b) = Mbody (ψ, β, γ)
(

x(g) − x
(g)
cntr

)

Mbody = Rx (ψ) Ry (β) Rz (γ) . (3.2.1)

Since rotation matrices do not commute, it is important to note that the body
is first yawed, then pitched and finally rolled, which is conventional in flight
mechanics. The geometry of the body is defined in the body reference frame,
for example composed by ellipsoids and spheres like the one illustrated in
figure 3.2.1. The angular velocity of the body in the global system is

Ω
(g)
b = R−1

z (γ)






0
0
γ̇


+ R−1

y (β)






0
β̇
0


+ R−1

x (ψ)




ψ̇
0
0








Ω
(b)
b = Mbody Ω

(g)
b

which defines the velocity field inside the insect resulting from the body mo-
tion,

u
(g)
b = u

(g)
cntr + M−1

body

(
Ω

(b)
b × x(b)

)
. (3.2.2)

Equation (3.2.2) is valid also in the wings, since the flapping motion is relative
to the body.

3.2.2 Body shape

The body shape is described in the body reference frame described previously.
For instance, for the body depicted in figure 3.2.1, which is composed of
an ellipsoidal shaped thorax and spheres for the head and eyes, the signed
distance function is the intersection of the distance functions for the thorax,
head and eyes,

δbody = max
(
δthorax, δhead, δeyes

)
. (3.2.3)
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The max operator of the signed distances in eqn. (3.2.3) represents the inter-
section operator [127]. The signed distances for the components read

δthorax

(
x(b)

)
=

√(
y(b)

)2
+
(
z(b)
)2 −

√
b2
(

1−
(

x(b)/a
)2
)

δhead

(
x(b)

)
=

∣∣∣x(b) − x
(b)
0,head

∣∣∣

δeyes

(
x(b)

)
=

∣∣∣x(b) − x
(b)
0,eyes

∣∣∣ ,

where a, b define the axes of the thorax ellipsoid and x
(b)
0,head,eyes are the cen-

ters of the spheres. A second example is the more realistic body shape in
figure 3.5.1, which is obtained by sweeping the radius

R (s) =





max
(
0,−1.299s2 + 0.94s + 0.03

)
s < 0.6333 abdomen

max
(
0,−2.16s2 + 3.47s− 1.21

)
0.6333 < s < 1 thorax

max
(
0,−12.68s2 + 27.49s− 14.73

)
1 < s < 1.2 head

around an arc-segment of radius rbc = 0.95 centered at x
(b)
bc = −0.245, z

(b)
bc =

−0.93.

3.2.3 Wing system

We consider only insects with two wings, one on each side, which applies for
example to true flies (Dipterae), but also to a variety of insects that have four
wings, but move them together so they act like one wing [13]. The extension
to four-winged insects that can move all wings independently, like Dragon-
flies [168], is straightforward. The wings are rotating about the pivot points

x
(b)
pivot,r and x

(b)
pivot,l. These pivots do not necessarily lie on the body surface; we

rather allow a gap between wings and body. This gap avoids problems with
non-solenoidal velocity fields at the wing base. It is conventional to introduce
a stroke plane, which is a plane tilted with respect to the body by an angle η.
The coordinate in the stroke plane reads

x(s) = Mstroke

(
x(b) − x

(b)
pivot

)
.

Since three angles fully describe the solid body rotation, the redundant stroke
plane is introduced for convenience only. It is mainly motivated by the visual
impression of the wings moving in such a stroke plane, even though in reality
there is an out-of-plane motion as well. Here, we use an anatomical stroke
angle, that is, the angle η is defined relative to the body. Some insects tilt their
stroke plane when changing from hovering to forward flight, others change
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the body pitch angle β. Within the stroke plane, the wing motion is described
by the angles α (feathering angle or angle of attack), φ (positional or flapping
angle), θ (deviation or out-of-stroke angle). Applying two rotation matrices
transforms from the body to the wing coordinate system:

x(w) = Mwingx(s) = MwingMstroke

(
x(b) − x

(b)
pivot

)
.

When flapping symmetrically, i.e., both wings following the same motion pro-
tocol, the stroke and wing rotation matrices for the left and right wing are
given by

Mstroke,l = Ry (η) Mstroke,r = Rx (π) Ry (η)

Mwing,l = Ry (α) Rz (−θ) Rx (φ) Mwing,r = Ry (−α) Rz (−θ) Rx (−φ)

due to the rotation Rx (π) the sign of θ for the right wing does not have to be
inverted. The angular velocities of the wings are given by

Ω
(b)
w = M−1

stroke


R−1

x (φ)






φ̇
0
0


+ R−1

z (−θ)






0
0
−θ̇


+ R−1

y (α)




0
α̇
0










Ω
(w)
w = Mwing Ω

(b)
w

which is used to compute the velocity field resulting from the wing motion,

u
(w)
w = Ω

(w)
w × x(w)

u
(g)
w = M−1

body M−1
wing M−1

stroke u
(w)
w . (3.2.4)

The total velocity field inside the wings is given as the superposition of the
body and wing rotation:

u
(g)
s (x ∈ {xw}) = u

(g)
w + u

(g)
b

The actual kinematics, i.e., the angles α (t), φ (t) and θ (t) are parametrized
by either Fourier or Hermite interpolation coefficients.

3.2.4 Wing shape

In the previous section we defined the wing reference frame x(w), in which
we now describe the wing’s signed distance function δ. In general, we define
a set of several signed distance functions, each of which describes one surface
of the wing. The signed distance function of the entire wing is then given
by their intersection. For some model insects, we consider simple wings for
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Figure 3.2.2 – Realistic wing shapes are described in polar coordinates R (ϑ).

which straightforward analytical expressions are available. For a rectangular
wing, for instance the one illustrated in figure 3.4.1 (c), we find for the signed
distance function

δ
(

x(w)
)
= max

(
x(w) − b; x(w) − (B− b) ; y(w) − 1; a− y(w); |z| − h/2

)
.

(3.2.5)
For realistic insect wings however, we parametrize the wing shape in polar
coordinates. As illustrated in figure 3.2.2, the shape in the wing plane is

described by the center point x
(w)
c , which is arbitrary as long as the function

R (ϑ) is unique for all ϑ. To sample the wing on a computational grid, we
need a function R (ϑ) that can be evaluated for all ϑ. As R (ϑ) is naturally
2π-periodic, a truncated Fourier series can be used:

R (ϑ) =
a0

2
+

N

∑
i=1

ai cos (2πiϑ) +
N

∑
i=1

bi sin (2πiϑ) (3.2.6)

In practice, eqn (3.2.6) has to be evaluated for all grid points in the vicinity of
the wing, which requires O

(
Nx NyNz

)
evaluations with a small constant. The

computational cost can however be significant, which is why eqn. (3.2.6) is
evaluated for 25 000 values of ϑ once during initialization. Afterwards, linear
interpolation is used for its lower computational cost. The signed distance for
such a wing then reads

δ
(

x(w)
)
= max

(∣∣∣z(w)
∣∣∣− h/2; r (ϑ)− R (ϑ)

)
.

If a wing cannot be described by one radius, because R (ϑ) is not unique,
several radii and center points can be used [13].
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3.2.5 Power requirement

Actuating the wings requires power expenditures that are very difficult to
measure directly. For larger animals, like hummingbirds, tiny masks can be
placed over the nares in order to measure oxygen consumption [52]. For
insects, this technique cannot be directly applied, instead, one could mea-
sure the oxygen concentration in a completely sealed wind tunnel. Most re-
sults about power consumption reported in the literature are instead based
on models [34, 37, 38].
In numerical simulations, the power can be obtained directly, since the aero-
dynamic torque moment m with respect to the wing pivot point is available
from eqn. (2.4.6). The power Paero required to move one wing is found to be

Paero = −m · (Ωw −Ωb) (3.2.7)

which is equivalent to the definition

Paero =

ˆ

∂Ωs

udF

given in [103]. The power can also be computed directly from the penaliza-
tion term,

Paero =

ˆ

Ω

us
χ

Cη
(u− us) , (3.2.8)

if the body is at rest. If it moves, the body velocity field has to be substracted
from eqn. (3.2.8), since the body motion does not contribute to the power.
The above definitions include all contributions from the fluid, which are usu-
ally treated separately in analytical models, e.g., according to [34]

Paero = Ppar + Pind + Ppro + Pacc

where Ppar is the parasitic power, Pind the induced power, Ppro the profile
power and Pacc the power to accelerate the virtual mass. In addition to the
aerodynamic power, the inertial power has to be expended, i.e., the power
required to move the wing in vacuum. As the flapping motion is periodic,
its stroke averaged value is zero. The inertial power Pinert is positive is the
wing is accelerated (power consumed) and negative if it is decelerated. The
definition is

Pinert = Ω
(w)
w ·

(
J(w)Ω̇

(w)
w + Ω

(w)
w × J(w)Ω

(w)
w

)

with the wing tensor of inertia J(w) [12]. As the wings are typically very thin,

the inertia tensor reduces to

J(w) =




Jxx Jxy 0
Jxy Jyy 0
0 0 Jzz


 .
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The sum of inertial and aerodynamic power can be negative during decelera-
tion phases, which would mean that the insect can store energy in its muscles.
It is unknown to what extend this can be realized, and it is thus often conser-
vatively assumed that energy storage is not possible, in which case the total
power Ptotal is given by

Ptotal = max (Pinert + Paero, 0) .

3.2.6 Governing equations in free flight

Until now we have considered the insect to be fixed, i.e., tethered in the
computational domain. In free flight, additional equations have to be solved
together with the fluid, namely Newton’s law. The body translation is then
governed by

M u̇
(g)
cntr = F(g)

where F(g) contains the aerodynamic and gravitational forces and M is the
mass of the insect. For simplicity, xcentr and ucentr correspond to the center of
gravity in the case of free flight. To handle the rotational degrees of freedom,
we employ a quaternion based formulation, similar to the one proposed in
[102], which avoids the ‘Gimbal lock’ problem. The governing equation for
the angular velocity Ω(b) in the body reference frame reads

J(b)Ω̇
(b)

+




0 −Ω
(b)
z Ω

(b)
y

Ω
(b)
z 0 −Ω

(b)
x

−Ω
(b)
y Ω

(b)
x 0


 J(b)Ω(b) = m(b),

where J(b) is the moment of inertia around the body axes
(

x(b), y(b), z(b)
)

and m is the vector of torque moments as defined in eqn. (2.4.6). The
skew-symmetric term stems from the change into a moving reference frame.
We introduce the normalized quaternion ε with components εi, i = 0, . . . , 3,
∑ ε2

i = 1. The governing equations for the quaternion state are

ε̇ =
1
2

ST Ω(b)

with the matrix

S =



−ε1 ε0 ε3 −ε2
−ε2 −ε3 ε0 ε1
−ε3 ε2 −ε1 ε0


 .

Assuming J(b) to be constant the body axes to be the principal axes of iner-

tia (i.e., J(b) is diagonal), the following first order system of 13 differential
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equations is obtained

d
dt




x
(g)
cntr

y
(g)
cntr

z
(g)
cntr

u
(g)
cntr,x

u
(g)
cntr,y

u
(g)
cntr,z
ε0
ε1
ε2
ε3

Ω
(b)
x

Ω
(b)
y

Ω
(b)
z




=




u
(g)
cntr,x

u
(g)
cntr,y

u
(g)
cntr,z

F
(g)
x /M

F
(g)
y /M(

F
(g)
z /M− g

)
(
−ε1Ω

(b)
x − ε2Ω

(b)
y − ε3Ω

(b)
z

)
/2(

ε0Ω
(b)
x − ε3Ω

(b)
y + ε2Ω

(b)
z

)
/2(

ε3Ω
(b)
x + ε0Ω

(b)
y − ε1Ω

(b)
z

)
/2(

−ε2Ω
(b)
x + ε1Ω

(b)
y + ε0Ω

(b)
z

)
/2((

J
(b)
y − J

(b)
z

)
Ω

(b)
y Ω

(b)
z + m

(b)
x

)
/J

(b)
x((

J
(b)
z − J

(b)
x

)
Ω

(b)
z Ω

(b)
x + m

(b)
y

)
/J

(b)
y((

J
(b)
x − J

(b)
y

)
Ω

(b)
x Ω

(b)
y + m

(b)
z

)
/J

(b)
z




(3.2.9)

which is solved with the same time discretization as the fluid. The rotation
matrix Mbody is then computed from the quaternion εi

Mbody =




ε2
0 + ε2

1 − ε2
2 − ε2

3 2 (ε1ε2 − ε3ε0) 2 (ε1ε3 + ε2ε0)
2 (ε1ε2 + ε3ε0) ε2

0 − ε2
1 + ε2

2 − ε2
3 2 (ε2ε3 − ε1ε0)

2 (ε1ε3 − ε2ε0) 2 (ε2ε3 + ε1ε0) ε2
0 − ε2

1 − ε2
2 + ε2

3


 ,

(3.2.10)
which replaces the definition in eqn. (3.2.1) in the free-flight case. The initial
values at time t = 0 for εi can conveniently be computed from a set of yaw,
pitch and roll angles,




ε0
ε1
ε2
ε3


 =




cos (ψ/2) cos (β/2) cos (γ/2) + sin (ψ/2) sin (β/2) sin (γ/2)
sin (ψ/2) cos (β/2) cos (γ/2)− cos (ψ/2) sin (β/2) sin (γ/2)
cos (ψ/2) sin (β/2) cos (γ/2) + sin (ψ/2) cos (β/2) sin (γ/2)
cos (ψ/2) cos (β/2) sin (γ/2)− sin (ψ/2) sin (β/2) cos (γ/2)


 .

In the actual implementation, we multiply the right hand side of equation
(3.2.9) with a six component vector with zeros or ones, to deactivate some
degrees of freedom.
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Figure 3.3.1 – Settling velocity of a falling sphere, experimental results by Mordant
& Pinton [116] and present results for coarse, medium and fine grids.

3.3 Validation case of a falling sphere

The first test case to validate the flow solver is the sedimentation of a sphere,
which in our terminology is an insect without wings and with a spherical body.
We consider case 1 proposed by Mordant and Pinton [116], who studied the
sedimentation problem experimentally in a water tank. The sphere of unit
diameter and mass M = 1.3404 is falling in fluid of viscosity ν = 0.0228
and unit density. The dimensionless gravity is g = 0.8036 and the terminal
settling velocity obtained from the experiments is U = 0.9488. We perform a
grid convergence test using the domain size 8× 8× 16, and parameters Nx ×
Ny×Nz×Cη of a coarse (96× 96× 192× 10−3), medium (192× 192× 384×
2.5 · 10−4) and fine (384× 384× 768× 6.25 · 10−5) grid. The number of points
per penalization boundary layer is K = 0.0573. The results of the convergence
study are illustrated in figure 3.3.1 and the settling velocity for the finest
resolution differs from the experimental findings by less than 1%. The finest
resolution required 30 GB of memory and 34 400 CPU hours on 1024 cores to
perform 266 667 time steps. The computational cost is relatively high, since
small values of Cη are required as the Reynolds number is small.

3.4 Validation case of a rectangular flapping wing

We consider the setup proposed in [158], Appendix B2, by Suzuki and co-
workers. It considers only one rectangular wing with a finite thickness, ne-
glecting thus the body and the second wing. The fact that the thickness is
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finite and the geometry rather simple, compared to actual insects, motivates
the choice of this setup as a first test case. The wing kinematics are given by

φ = φm cos (2πt)

α =
αm

tanh cα
tanh (cα sin (2πt))

θ = 0

where φm = 80◦, αm = 45◦, cα = 3.3; the motion is symmetric for the up-
and downstroke and depicted in figure 3.4.1 (a-b). The rectangular wing and
the wing coordinate system are illustrated in figure 3.4.1 (c). We normalize
the distance from pivot to tip to unity, which yields a = 1.6667, b = 0.0667,
B = 0.4167 and a wing thickness of h = 0.04171. The Reynolds number
is set to Re = UtipB/ν = 100 with Utip = 2πφm, yielding the kinematic
viscosity ν = 0.0366. In the present simulations, we discretize the domain of
size 3× 3× 3 using 512× 512× 512 points and a penalization parameter of
Cη = 1.25 · 10−4 (K = 0.365). The reference computation is performed in a
domain of size 4.16× 4.16× 4.16, using a fine grid near the wing and a coarse
one in the far-field. Based on the resolution of the fine grid, ∆x = B/50, the
equidistant resolution would be 5003. In our simulations, the body reference

point is located at x
(g)
cntr = (1.5, 1.5, 1.7) and coincides with the wing pivot

point, thus x
(b)
pivot = 0. The orientation of the body coordinate system is given

by ψ = 0◦, β = −45◦, γ = 45◦ and η = −45◦, where the 45◦ yaw angle was
added to keep the wing as far away from the vorticity sponges as possible.
A total of four strokes has been computed, starting with a quiescent initial
condition, u (x, t = 0) = 0. The outer boundary conditions on the domain
are homogeneous Dirichlet conditions in z-direction and a vorticity sponge,
extending over 32 grid points with Csp = 10−1, in the remaining ones. The
simulation required 35 GB of memory and 5785 CPU hours on 1024 cores. A
total of 27 701 time steps was performed.

The resulting time series of the vertical force is illustrated in figure 3.4.1 (d).
It takes the first two wingbeats to develop a periodic state, since the motion
is impulsively started, and then the following strokes are almost identical.
The present solution agrees well with the reference solution, and the relative
R.M.S difference is ‖F− Fref‖2 / ‖Fref‖2 ≈ 4% over the last two periods.

3.5 Hovering flight of a fruit fly model

A major difficulty in validating numerical codes for insect flight is the neces-
sity of sufficiently precise experimental data, including all details of the appa-
ratus, like the wing shape, axis of rotation, position of pivot points and time
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Figure 3.4.1 – Flapping rectangular wing. Top left: kinematics used in the test case,
as given by Suzuki et al. [158]. Top right: Geometry of the flapping rectangular
wing. Contrary to [158], we normalize the distance pivot-wing tip to unity. Bottom
left: visualization of the wing kinematics by a chord section (without body, color
represents time) Bottom right: time evolution of the vertical force acting on the wing
for the computed four strokes, with the reference solution presented in [158], which
was only shown for the fourth stroke.

series of the rotation angles and stroke plane. Some numerical contributions
tried to compare with the experiments by Dickinson et al. [29], for example
[158, 179]. The agreement is at best qualitative and of the right order of
magnitude, which can be attributed to uncertainties in the input parameters.

For a more precise validation, we instead rely on a numerical solution as ref-
erence, circumventing the mentioned difficulties. The model insect is a fruit
fly, Drosophila melanogaster, of which numerical simulations have been pre-
sented by Maeda and Liu [103]. Their simulations are based on the chimera
approach, i.e., a body-fitted grid for the wings (65× 65× 11 each) and the
body (61× 61× 9), as well as a background grid (161× 141× 127) have been
used to solve the incompressible Navier–Stokes equations, approximated in
the artificial compressibility formulation, using a finite volume discretization.

The fruit fly considered is defined in figure 3.5.1. The wing length from pivot
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point to wing tip, R = 2.47 mm1, the fluid density ̺ f = 1.225 Kg/m3 and
the wingbeat frequency f = 218 Hz are used for normalization. The body,
depicted in figure 3.5.1 (a,c), has an elliptical cross-section with center points

following an arched centerline of radius rbc = 0.94644 centered at x
(b)
bc =

−0.244769, z
(b)
bc = −0.9301256. The wing pivot points are located at

x
(b)
pivot,rl = (−0.12, ±0.1445, 0.08) .

The insect is tethered at x
(g)
c = (1.6, 1.6, 1.9) in a computational domain of

size 3.2 × 3.2 × 3.2, discretized with 640 × 640 × 640 Fourier modes and a
penalization parameter of Cη = 1.15 · 10−4 (K = 0.23). Its body orientation is
given by ψ = 0, β = −45◦, γ = 45◦ and η = −45◦, where we added the yaw
rotation to minimize the influence of periodicity. The fruit fly hovers, thus the
body position and orientation does not change in time. A total of 4 wing beats
has been computed, and the initial condition is fluid at rest, u (x, t = 0) = 0.
We apply a vorticity sponge in the x and y direction (32 grid points thick with
Csp = 10−1) and impose no-slip boundary conditions in the z-direction, i.e.,
we impose a floor.

The wing shape is illustrated in figure 3.5.1 (d). It has a mean chord cm =
A/R = 0.33, which yields with the kinematic viscosity of air, ν = 1.5 ·
10−5 m2/s the Reynolds number

Re =
Utipcm

ν
=

2ΦR f cm

ν
= 136

where Φ = 2.44 rad is the stroke amplitude of the positional angle. The
time evolution of the wing kinematics is illustrated in figure 3.5.1 (b). It is
inspired by but not identical to the measurements by Fry et al. [57], and thus
also slightly from figure 3.1.3. The up- and downstroke are not symmetric,
and the wing trajectory, figure 3.5.1 (a), shows the characteristic ∪-shape.

The results for the lift force, normalized with the weight, and the aerodynamic
power in W/kg body mass are depicted in figure 3.5.2. The normalization is
chosen because it yields more intuitive values. As the mass of the model
insect was not given in [103], we assumed the fourth stroke of the reference
data to balance the weight, yielding m = 1.02 mg. Small circles at mid-stroke
indicate stroke-averaged values. For the stroke-averaged vertical force, we
find 10.03%, 6.19%, 4.03% and 3.26% relative difference to the reference data
for the four strokes computed, which can be explained by the impulsively
started motion at the beginning of the first stroke. The time evolution, e.g.,
the occurrence of peaks, are similar in both data. The agreement is even better

1The value R = 2.39 mm in [103] is the distance root-tip and not pivot-tip, according to the
authors.
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Figure 3.5.1 – Hovering fruit fly, for comparison with Maeda and co-workers. Left:
overview of the setup in perspective view. Sponges are applied in the x and y-
direction, while in the z-direction a floor is imposed. Top right: To-scale drawing

of the insect’s body in the plane y(b) = 0. The body is rotationally symmetric with a
circular center line. Bottom right: To-scale drawing of the wing shape, together with
its pivot point.

for the aerodynamic power, with relative differences of 0.57%, 0.06%, −0.95%
and −1.00% for the stroke-averaged values. Both power and lift peak during
the translation phase of the up- and downstroke, and reach a minimum value
at the reversals. This is remarkably different from the patterns suggested in
[29], in which peaks occur near the reversals, and may be linked to the non-
zero deviation angle θ.

The flow field generated by the fruit fly model is visualized in figure 3.5.3 by
iso-surfaces of the Q-criterion, for two time instants during the downstroke.
For incompressible flows, the Q-criterion can be computed as Q = ∇2 p/2, see
[94, p. 23]. The first snapshot at t/T = 0.2 is during the early downstroke,
when the maximum angle of attack (cf. figure 3.5.1 (b)) is reached, i.e.,
it is at the beginning of the translation phase. The leading edge vortex on
both wings is already formed, and the lift production is close to its peak (cf.
figure 3.5.2). A vortex ring can be observed at the left wing, connecting
the wing root at tip. It is formed when the wing begins to change direction
at the stroke reversal and therefor termed starting vortex. The tip vortex,
however, is continuously formed throughout the stroke, as can be seen in the
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Figure 3.5.2 – Hovering fruit fly, comparison with the results obtained by Maeda
and co-workers. Top: wing kinematics over time, note that all strokes have the same
kinematics. Middle: total vertical force, stroke average indicated by circles. Bottom:
aerodynamic power. Gray shaded areas denote upstrokes. The mean values dur-
ing the last stroke differ by 3.26% and 1.00% for the vertical force and the power,
respectively. The overall agreement is good.

second snapshot at t/T = 0.4, which is shortly before stroke reversal. It is
transported downwards by the fluid flow, since the vertical force production
requires to accelerate fluid momentum in that direction. The first snapshot
shows the tip vortex shed during the previous upstroke, which is at that time
a coherent tube. In the second snapshot, it is already largely dissipated by
the fluid viscosity and no longer connected. The leading edge vortex can also
be observed at t/T = 0.4, illustrating that it indeed remains stably attached
throughout the stroke.
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Figure 3.5.3 – Snapshot of the vortical structures generated by a hovering fruit fly
model, visualized by iso-surfaces of the Q-criterion (Q = 100), at two different times
of the downstroke (a) at the beginning of the downstroke t/T = 0.2 and (b) shortly
before the ventral stroke reversal t/T = 0.4. The leading edge vortex is formed at
the beginning of the downstroke, and at t/T = 0.2 is already visible, and remains
stably attached until the ventral stroke reversal. The tip vortex shed in the previous
upstroke is visible in (a) and almost dissipated in (b).



Chapter 4

Simulation of a model
bumblebee in turbulent flow

The content of this chapter is adopted from [43].

4.1 Introduction

Insect flight currently receives considerable attention from both biologists
and engineers. Its fundamental aerodynamics were first explored assuming
that insects move in artificially quiescent air. However, natural environment
is usually turbulent and the influence of atmospheric turbulence including
canopy flows on aerodynamic forces and flow structures in flapping flight are
vast research areas [58, 181]. Although numerical simulations allow bet-
ter control of flow parameters, only experimental contributions exist so far
[24, 124, 137, 170].

Field studies show variations of insect behavior with changing weather condi-
tions, suggesting a pronounced dependency of aerodynamic force generation
from atmospheric turbulence [159]. The interaction between insects and tur-
bulence is complex because it includes sensing, wing motion, body kinemat-
ics, and mechanical responses of the flight apparatus. The behavior of wild
orchid bees flying freely in an turbulent air jet has been studied by Combes
and Dudley [24]. They found that turbulent flow conditions have a destabi-
lizing effect on the body, most severe about the animal’s roll axis. In response
to this flow, orchid bees try to compensate the induced moments by an ex-
tension of their hindlegs, increasing the roll moment of inertia. Interaction
of bumblebees with wake turbulence has also been considered by Ravi et al.
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[137]. Their experiments were performed in a von Kármán-type wake behind
horizontal and vertical cylinders that produced large vortical flow structures.
Under these conditions, bees display large rolling motions, pronounced lat-
eral accelerations, and a reduction in their upstream flight speed. Vance et al.
[170] performed a comparative study on the sensitivity of bees and stalk-eye
flies to localized wind gusts. The studied flight sequences were divided into
perturbation and recovery periods, each of them consisting of a passive phase
with symmetric wing kinematics and an active phase with asymmetric kine-
matics. The authors found that bees and stalk-eye flies respond differently
to aerial perturbations, either causing roll instabilities in bees or significant
yaw rotations in stalk-eye flies. Ortega-Jimenez et al. [124] analyzed feed-
ing flights of Hawkmoths in vortex streets past vertical cylinders. Depending
on distance of the animal from the cylinder and cylinder size, they observed
destabilizing effects on yaw and roll and a reduction in the animal’s maxi-
mum flight speed. Kinematic responses to large helical coherent structures
were also found in Hawkmoths flying in a vortex chamber [125]. A study
on the energetic significance of kinematic changes in hummingbird feeding
flights, further demonstrated a substantial increase in metabolic rate during
flight in turbulent flows, compared to flight in undisturbed laminar inflow
[126, 136].

It is challenging to conduct experiments with living, freely flying animals in
turbulent flows because of their complex, sensor-dependent changes in wing
kinematics and wing-wake interaction. Besides vision-guided responses, ani-
mals also change body posture and flight heading according to feedback from
their antennae that detects wind speed and odors. It has been shown that
vortex streets produce odor plumes that provide cues for navigation, which
are not available in laminar flows [119]. To isolate specific effects of tur-
bulence on aerodynamic mechanisms and power expenditures in flight, nu-
merical simulations are useful tools with which parameters of flows and wake
dynamics may be studied beyond natural limits including entire instantaneous
flow fields.

In this chapter, we focus on the impact of turbulence on specific aerodynamic
features used for force production in forward flight. The model insect is con-
sidered to be tethered and the wing motion is prescribed regardless of the
flow conditions. As described in the previous chapter, insect flight relies on a
leading edge vortex for force production, and a portion of the power expen-
ditures is spent on the tip vortices [88]. The question we address is whether
these features are systematically altered by turbulent perturbations, e.g, the
leading edge vortex is destabilized and detaches from the wing. This destabi-
lization would have tremendous consequences on the force production. The
choice of the model insect, the bumblebee bombus terrestris, is motivated by
the fact that they are all-weather foragers, and thus encounter a particularly
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large variety of natural flow conditions [137]. Bumblebees also are medium
sized (wing length 13.2 mm), thus the associated Reynolds numbers are suffi-
ciently large. Furthermore, this species has been considered in the literature,
both in experimental [33, 34] and numerical work [180, 183], thus various
data are available.

The remainder of this chapter is organized as follows. In section 4.2, we
present the model bumblebee, i.e., the wing and body geometry and other
parameters. We then discuss the wingbeat kinematics suggested in the litera-
ture in section 4.2.2, and derive the kinematics that lead to force and torque
balanced flight under laminar flow conditions. The laminar case also serves
as reference and orientation prior to studying the model in turbulence, and
we thus discuss some characteristics of the wake turbulence generated by the
insect itself in section 4.2.3. In section 4.3, we study the model with turbulent
inflow conditions. To this end, we discuss homogeneous isotropic turbulence
as canonical model in section 4.3.1, and discuss how it is rescaled and im-
posed as inflow condition in sections 4.3.2 and 4.3.3 respectively. The results
of the study are presented thereafter.

4.2 Bumblebee forward flight in laminar flow

4.2.1 Bumblebee model

The parameters of the bumblebee model are derived from [33], case BB01.
The animal’s typical body mass, M, is approximately 175 mg and wing length,
R, amounts to 13.2 mm. We assume the insect to be composed of linked rigid
bodies and model the insect’s body shape by sweeping an elliptical section
of variable size along a curvilinear centerline. Compared to other insects,
bumblebees have relatively thick legs that potentially create non-negligible
aerodynamic effects. We thus include all legs, the proboscis and the antennae
in our model as circular cylindrical sections joined by spheres, and further
assume bilateral symmetry of the insect. Figure 4.2.1A-B shows side and
top views of the modeled animal with all linear dimensions normalized to
wing length. We numerically compute the inertia tensor, I

=
, of the bumble-

bee neglecting wings and assuming uniform body density of ̺b = M/V =
362 kg/m3, where V = 0.48 cm3, from equation

I
=

= ̺b

ˆ

v

(
(r · r) E

=
− r⊗ r

)
dV

=




0.183 0 0.1307
0 0.400 0

0.1307 0 0.339


 .



68 Simulation of a model bumblebee in turbulent flow

Diagonalizing the inertia tensor yields the principal moments of inertia I11 =
0.1092, I22 = 0.3998 and I33 = 0.4136, all in units of 10−8 kgm2. The data
show that moment of inertia about the roll axis (x-axis) is approximately 4-
times smaller than about the yaw and pitch axes, which is in agreement with
[137] and [24].
Wing contour was digitized from [1] and the area scales to 48.37 mm2 of a
single wing and 3.66 mm mean wing chord, c (figure 4.2.1E). The wingbeat
kinematics are shown in figure 4.2.1C-D; details about their modeling are
given in section 4.2.2. The flight speed is set at the intermediate value of
2.5m/s and the wingbeat frequency f is 152 Hz according to values previously
measured in freely flying bumblebees [33, 183]. The inclination, η, of the
stroke plane against the longitudinal body axis is 37.5◦, and body pitch angle,
β, is 24.5◦ with respect to horizontal (Fig. 4.2.1 C). Modeled wings flap at
mean wing tip velocity of U = 2ΦR f = 8.75 m/s and a Reynolds number
of 2042 based on U, c and the kinematic viscosity of air at 300 K, ν = 1.57 ·
10−5 m2/s. The fluid density is ̺ f = 1.177 kg/m3.

4.2.2 Wingbeat kinematics and aerodynamic forces and power

The present model is based on the work of Dudley and Ellington [33, 34].
This contribution is relatively old and lacks the precision of modern high-
resolution high speed cameras. It is however the only published data on
actual forward flight kinematics. The time evolution of the angles and the
stroke trajectory are illustrated in figure 4.2.2 (top). Especially the feathering
angle is subject to uncertainty, since only 8 points during the cycle are given.
Figure 4.2.2 (top) therefore shows the result of a curve fitting process.
To evaluate the kinematics, we carry out a computation of the bumblebee
tethered at xcntr = (2, 2, 2) in a 6× 4× 4 domain, with the mean flow im-
posed to u∞ = 1.246, which corresponds to 2.5 m/s. Vorticity sponges are
used at the in- and outlet of the domain to remove the wake. The penal-
ization parameter is Cη = 2.5 · 10−4 (K = 0.074), and the spatial resolu-
tion 1152 × 768 × 768. A reference computation at even higher resolution
(1536× 1024× 1024) yields no significant difference and thus confirms that
the lower resolution is sufficient. We compute four strokes, and the cycle-
averaged aerodynamic force, moment and power are given in table 4.1 for
the last cycle. We find that the lift force is 1.14 the weight force, i.e., excess
lift is produced, as well as a thrust force of 0.373. The model would thus
accelerate. The roll and yaw moments are zero, owing to the bilateral sym-
metry, and we find a significant pitch moment. The latter finding however is
not a major concern, since the point of reference, xcntr, is set arbitrarily, and
the actual center of gravity is unknown. A nonzero mean pitch moment could
thus in principle be balanced by the weight. The deviation from unit lift is
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already notable, and the thrust force of more than one third the weight is un-
acceptable. The worst feature is however the power requirement of 165 W/kg
body mass, which is significantly larger than those values reported by Dudley
and Ellington [34] (56 W/kg body mass), Berman et al. [12] (53 W/kg body
mass) and Ellington [38] (88 W/kg body mass). Muscles cannot produce
that much power, especially not the instantaneous aerodynamic power, which
reaches peaks well above the cycle-average value.

Sun and co-workers likewise reported that they were unable to achieve force
and torque balanced flight using the original set of kinematics, although the
power was not presented [180, 183]. In these contributions, the authors
suggest the use of a simplified kinematics set, consisting of a sinusoidal posi-
tional angle, constant deviation and piecewise constant feathering angle with
a sinusoidal transition during the time interval τ. The time evolution of the
angles during the cycle are given by

φ = φ + Φ cos (2πt) (4.2.1)

θ = θ0 (4.2.2)

α =





αdown − A
(

t− τ
2 − τ

2π sin
(

2π t−T1
τ

))
0 < t < τ

2

αdown
τ
2 < t < T1

αdown + A
(
t− T1 − τ

2π sin
(
2π t

τ

))
T1 < t < T2

αup T2 < t < T3

αup − A
(

t− T3 − τ
2π sin

(
2π t−T3

τ

))
T3 < t < 1

(4.2.3)

T1 =
1
2
− τ

2
; T2 = T1 + τ; T3 = 1− τ

2
; A =

αup − αdown

τ
.

These equations contain six adjustable parameters, αdown, αup, τ, φ, Φ and θ0,
but the choices presented in [180, 183] did not lead to balanced flight using
our model. We thus proceed and instead derive the parameters from Dudley’s
data, yielding φ = 24◦, Φ = 62.5◦, θ0 = 12.55◦, αdown = 50◦, αup = 0◦

and τ = 0.22, which however still did not yield acceptable results for the
forces and the power. Since the feathering angle α is the most uncertain in
the original data, we varied it until balanced flight was achieved, similar to
[180, 183], yielding αdown = 70◦ and αup = −40◦. This set of kinematics
is illustrated in figure 4.2.2 (center), and we term it “simplified & balanced”.
The aerodynamic measures (table 4.1) show that this set of kinematics is a
good choice. Especially the aerodynamic power has dropped by a factor of
two with respect to the kinematics presented by Dudley, and the forces and
moments are a good approximation for balanced flight.

However, when comparing the simplified and original kinematics in the stroke
trajectories shown in figure 4.2.2, the constant deviation angle is a striking
difference, since the figure-of-eight shape is lost. As a last step, we thus keep
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Kinematics
set

Fh [Mg] Fv [Mg] Paero Mroll Mpitch Myaw

Dudley [33] -0.37 1.14 165.00 0 -0.307 0

Simplified &
Balanced

-0.08 1.02 84.05 0 0.01 0

Simplified
figure-of-
eight

-0.14 1.07 96.30 0 0.03 0

Table 4.1 – Stroke averaged aerodynamic measures for the different kinematics sets.
Forces are normalized by the weight force Mg, moments by MgR, power in W/kg
body mass.

φ and α according to eqn. (4.2.1,4.2.3), respectively, with the parameters
found previously for balanced flight. The deviation angle θ, eqn. (4.2.2),
is replaced by the data reported by Dudley. This set of kinematics is shown
in figure 4.2.2 (bottom) and termed “simplified figure-of-eight”. The cycle-
averaged flight data is reported in table 4.1. The thrust force is observed to
be almost twice as large as in the previous case, and the excess lift increases
as well. The aerodynamic power is about 14% higher. Based on this data, the
simplified & balanced kinematics (figure 4.2.2 center) are preferred, and we
employ them for the remainder of this chapter.
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Figure 4.2.1 – Bumblebee model. (A-B) side and top view of the bumblebee body with
the definitions of the body point of reference and the wing pivot points. The body is
obtained by sweeping a rotationally symmetric body around an arc (black dashed
line). The wings rotate around the pivot points (red stars) within the stroke plane,
which is inclined by η = 37.5◦ with respect to the body normal. The entire body is
inclined by β = 24.5◦ with respect to the horizontal (C). The two wings follow the
symmetric motion protocol illustrated in D. The wing geometry is illustrated in E,
where the distance pivot point - wing tip is normalized to unity. Wing angles are
defined in F.
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Figure 4.2.2 – Bumblebee kinematics. Top row: data extracted from experimental
work by Dudley and Ellington [33]. Mid row: Simplified and balanced kinematics
used here. Bottom: Simplified φ and α, but θ from the experimental data, yielding
the figure-of-eight motion type.
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4.2.3 Wake turbulence generated by the bumblebee

Since the properties of turbulence encountered by bumblebees are essentially
unknown, we consider the turbulence generated by the insect itself as an ori-
entation. We visualize the instantaneous flow field at t/T = 0.3, i.e., during
the downstroke, in figure 4.2.3 by the ‖ω‖ = 100 isosurface of vorticity mag-
nitude. Besides the typical vortex features of flapping insect flight, namely the
leading edge and tip vortices, small scaled structures are visible in the wake.

To further analyze the flow properties, we compute the turbulence intensity
Tu, which we define as the RMS velocity normalized by the free-stream ve-

locity u∞, Tu =
√

2e′kin/3/u∞. In the latter equation, e′kin is the turbulent

kinetic energy defined as u′ · u′/2, where u′ is the instantaneous turbulent
velocity, which is defined as u′ = u− u. The overline denotes time average.
The computation of e′kin can be tedious, as during the computation, the time-
averaged velocity field is not available. It is computed on the fly during the
simulation according to

un+1 =
(
un∆tn + tnun

)
/tn+1,

where un is the value of u after n time steps at time tn. The final value of u is
of course available only after the simulation. To compute the time averaged
turbulent kinetic energy, it is possible to use the identity

e′kin =
(

u2 − u2
)

/2

to facilitate the computation, since both contributions can be computed on
the fly. The resulting Tu is visualized in figure 4.2.3 by means of three semi-
transparent isosurfaces. In the vicinity of the wing and directly behind the
abdomen, relative turbulence intensity exceeds Tu = 0.6. In a distance 4R
downstream, Tu dropped to 0.4, and the 0.2 isosurface is bounded by the
outflow condition, indicating that the isosurface extends to more than 4R,
which is the limit of the computational domain.

The analysis of the model bumblebee thus shows that it generates peak turbu-
lence intensities of up to 0.4 at distances relevant for a following insect. The
flow condition may thus also be directly relevant to bumblebees flying closely
to each other, for instance at the nest entrance, where wing–wake interaction
likely occurs.

The wake turbulence intensity generated by the bumblebee is thus orders of
magnitudes larger than in typical engineering applications. Mueller et al.
[117], for instance, studied the influence of inlet turbulence on low Reynolds
number airfoils, where “low” refers to values of about 2 · 105, experimentally
in a wind tunnel with increased disturbance level. The turbulence intensities
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Figure 4.2.3 – Model bumblebee in forward flight under laminar inflow conditions.
Left column: instantaneous flow field at t/T = 0.3, visualized by the ‖ω‖ = 100
isosurface. Right: isosurfaces of the turbulence intensity generated by the insect and

normalized by free-stream velocity, Tu =

√
2u′2/3/u∞.
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in that wind tunnel were below 1%, yet the flow field around the airfoil was
extremely sensitive to the perturbations.

4.3 Bumblebee forward flight in turbulent flow

The simulations of the bumblebee model in laminar inflow presented above
are used to validate our model, and the wake turbulence generated by the
flapping wings gives an estimate of relevant turbulence intensities. In the
following, we study bumblebee flight in turbulent air.

4.3.1 Model turbulence: Homogeneous isotropic turbulence

Insects successfully fly in turbulent environments [124, 137, 170]. However,
the kind of aerial perturbation they actually encounter is not well known
and depends on a large set of parameters, like the weather, landscape, flight
altitude, etc. Atmospheric turbulence and in particular the small scale vortical
structures are vast research areas [58, 181].

We model the inflow perturbations by homogeneous isotropic turbulence (HIT).
This is a reasonable assumption for the small turbulent scales relevant to in-
sects, and HIT is a well established “numerical experiment” [140]. As the
name suggests, all three spatial directions are periodic, and thus eqns (2.1.1a-
2.1.1b) are solved without boundary conditions. In a triply periodic setup,
Fourier spectral methods are particularly beneficial because of their favorable
numerical properties.

In general, such a turbulence simulation is performed by starting from a ran-
dom, solenoidal initial condition with prescribed spectrum, which is evolved
according to the incompressible Navier–Stokes eqn. The energy dissipation by
the friction term is, approximately or exactly, compensated by a forcing term,
that feeds energy into the system. This forcing usually acts on the largest few
wavenumbers. Scales smaller than the forcing scale will then develop accord-
ing to the Navier–Stokes equations, and the flow field converges towards a
statistically steady state, which is independent of the initial condition.

For convenience, we consider only domains of size (2π)3. Our numerical code
is de-aliased using the 2/3-rule, thus the largest wavenumber retained by the
simulation is kmax = 2 (N/2− 1) /3. For all isotropic turbulence simulations
we use the Runge–Kutta 4 time stepper with explicit treatment of the friction
term, since the time step is limited by the CFL condition.

Homogeneous isotropic turbulence can be characterized by a variety of inte-
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gral quantities that are summarized in the following:

E (|k|) = 1
2 ∑

k− 1
2≤|k|≤k+ 1

2

∣∣û′ (k)
∣∣2 Radial energy spectrum

ǫ = 2ν

ˆ kmax

0
|k|2

∣∣û′ (k)
∣∣2 dk = ν 〈ω ·ω〉 Mean rate of energy dissipation

e′ =
1
2

〈
u′ · u′

〉
=

3
2

U2 =

ˆ kmax

0
E (|k|)dk Mean turbulent kinetic energy

Λ =
π

2U2

ˆ kmax

0
k−1E (|k|)dk Integral (length)scale

λ =

(
15νU2

ǫ

)1/2

Taylor Micro(length)scale

ℓη =

(
ν3

ǫ

)1/4

Kolomogorov length scale

τη =
(ν

ǫ

)1/2
Kolomogorov time scale

uη = (νǫ)1/4 Kolomogorov velocity scale

T0 =
Λ

U
Eddy turnover time

U =

√
1
3
〈u′ · u′〉 RMS velocity

Rλ =
λU

ν
Turb. Reynolds number

The time average is denoted by the overbar and primes denote turbulent fluc-
tuation quantities, e.g., u′ = u− u, where u = 0 in homogeneous isotropic
turbulence. Spatial average is denoted by 〈〉. The radial energy spectrum
is the energy of a shell in the three-dimensional wavenumber space. A typi-
cal spectrum consists of the energy-carrying range at low wavenumbers, the
inertial range which follows the well-known −5/3 power law, and the dissi-
pative range at the highest wavenumbers. The turbulent kinetic energy e′ is
dissipated by the dissipation rate ǫ, both are spatial averages.

Turbulence is a multiscale phenomenon and a variety of important scales can
be defined. The integral scale Λ is a representative length for large, energy-
carrying structures, and the Taylor mirco scale λ is a length scale in the inertial
range of the spectrum. Both can also be computed from autocorrelations
of the velocity. In the dissipative range, the Kolmogorov scales ℓη, uη and
τη are relevant. By definition, the Reynolds number based on these scales,
Reη = uηℓη/ν is unity.
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In many simulations, scientists have aimed for the highest possible Reynolds
number on a given grid, in which case the product kmaxℓη is ≈ 1, meaning
that the Kolmogorov length scale is the smallest resolved spatial structure.
In any case, independent of ℓη, it should further be assured that the Taylor
macroscale is smaller than the box size, Λ < 2π, because otherwise the effect
of periodicity spoils the results.
As stated previously, simulating isotropic turbulence requires a suitable forc-
ing term that feeds energy into the system. Otherwise, all energy would even-
tually be dissipated. A variety of different forcing schemes have been reported
in the literature. We consider two alternatives here, the method by Machiels
[101] and the method by Jimenez et. al [79].
The first forcing method we use here is the one used by Machiels [101]. The
forcing term acts on the modes with |k| ≤ K f , where K f = 2.5. The method
aims at forcing a given dissipation rate ǫ f , which is convenient since it directly
implies a given ℓη. The forcing is thus easy to adjust for a given resolution.
We give the forcing term without derivation:

f̂ (k, t) =

{
ǫ f û (k, t) /2

´ K f

0 E (|k| , t) |k| ≤ K f

0 otherwise
(4.3.1)

We will see, though, that the effective dissipation rate is not constant but
oscillates with mean value ǫ = ǫ f .
Another forcing method was originally proposed by Jiménez [79], and is also
employed by Kaneda and co-workers in the current state of the art simula-
tions. The forcing aims at keeping the turbulent kinetic energy, e′, constant
over time. It thus feeds the dissipated energy back in the system. The viscos-
ity is then adapted to the numerical resolution. We start the derivation of the
forcing term by noting the Navier–Stokes equation with the non-linear term
written in divergence-form

∂tu +∇ · (u⊗ u) = −∇p + ν∇2u + f

Dot-multiplying this equation by u yields the energy equation, which is then
averaged spatially. The non-linear term and the pressure gradient term then
vanish due to periodicity, and one is left with

∂t

ˆ

T

u2

2
dV = −2νZ +

ˆ

T

f · udV, (4.3.2)

with the enstrophy Z =
´

T

1
2 ω · ωdV. The last integral in eqn (4.3.2) should

be evaluated in Fourier space, as the forcing term is conveniently defined
there. Applying Parseval’s theorem yields

d
dt
〈E〉 = ǫ + ∑

k

f̂
k
· û∗k (4.3.3)
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the ansatz for the forcing is

f̂ (k) =

{
−cû (k) |k| ≤ K f

0 otherwise

where c = c (t) is a |k|-independent constant yet to be determined. For the
kinetic energy to be constant, we demand the left hand side of eqn (4.3.3) to
be zero, we are then left with

c =
ǫ

∑
K f

0 |û|
2 dk

(4.3.4)

By noting that the denominator is the energy in the forced modes, we show
the similarity between the two forcing methods. They simply differ in that
Machiels uses a pre-defined ǫ f and Jiménez chooses the current dissipation
rate ǫ.

To generate the initial condition, we follow Rogallo’s work [140]. The aim is
to generate a divergence-free, random velocity field imposing a given energy
spectrum E (|k|). This can be achieved in Fourier space using

û (k, t = 0) =




α |k| ky + βkxkz

−α |k| kx + βkykz

−βk2
h


 / |k| kh

where kh =
√

k2
x + k2

y and

α = 2

√
E (|k|)
4π |k|2

exp (ιΘ1) cos (Φ) ; β = 2

√
E (|k|)
4π |k|2

exp (ιΘ2) sin (Φ) .

The variables Θ1,2 and Φ are random numbers between 0 and 2π. The

prescribed spectrum is in our case E (|k|) =
(
|k|4 /k5

p

)
exp

(
−2
(
|k| /kp

)2
)

,

where kp is the wavenumber with the highest energy in the field; it is usually
equal to two. The same spectrum is used, for instance, in [77]. The resulting
flow field is then rescaled to have the desired enegery.

We compare both forcing methods using a 2563 simulation with an initial
turbulent kinetic energy e′ = 0.5. The viscosity is set to ν = 2 · 10−3. For
Machiels forcing, we set ǫ f = 0.0936. The time evolution of energy, dissipa-
tion and Rλ are shown in figure 4.3.1. We first note that the kinetic energy e′

is not perfectly constant using Jimenez forcing approach; it rather increases
slightly with the simulation time. We should, however, note that we compute
50 eddy turnover times (T0 = 2.1), which is longer than many simulations in
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Figure 4.3.1 – Homogeneous isotropic turbulence. Time evolution of the turbulent
kinetic energy e′, the dissipation rate ǫ and the Reynolds number based on the Taylor-
microscale Rλ, for both types of forcing discussed in the text. The dashed lines marks
the dissipation rate set for Machiels forcing, ǫ f = 0.0936. Bottom right is the energy
spectrum at t = 100.

turbulence research are performed. The reason is that we can save more un-
correlated velocity fields when running the simulation longer. Using Machiels
forcing, fluctuations of roughly 20% the initial energy can be observed. It is
rather surprising that the dissipation rate fluctuates in the same manner for
both forcing types, and in Machiels case its mean value is indeed ǫ f . The
turbulent Reynolds number Rλ likewise is very similar in both forcing types
and oscillates around Rλ ≈ 100. Figure 4.3.2 (left) visualizes an instanta-
neous flow field by means of the ‖ω‖ = 18 isosurface of absolute vorticity.
The flow exhibits the typical “vortex tubes” that have first been reported in
[172] and then later in [79]. The energy spectrae are shown in figure 4.3.2
(right) for both forcing types. They are virtually identical, and exhibit only a
small inertial range, since the Reynolds number is not high enough for a long
inertial range to exist. In both cases, the simulation is slightly overresolved
(kmaxℓη ≈ 2).
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Figure 4.3.2 – Homogeneous isotropic turbulence. Left: visualization of the flow
field by the ‖ω‖ = 18 isosurface of absolute vorticity. In the simulation Rλ is equal
to 100, and the typical “vortex tubes” [79] are visible. Forcing method is negative
viscosity (Jiménez). Right: energy spectrum for both forcing types, dahed line is
k−5/3.

4.3.2 Rescaling to insect dimensions

The isotropic turbulence data was computed conventionally in a domain of
size (2π)3, and before using it as inflow turbulence, it must be rescaled. For
the sake of clarity, we henceforth state quantities from the HIT simulations
with a tilde overset. Reynolds similarity requires keeping Re = Lyu′/ν con-
stant in both simulation, and thus the scaling relation is simply

u′ =
2πν

Lyν̃
ũ′. (4.3.5)

Note that eqn. (4.3.5) is defined only up to a free parameter, the lateral
size of the computational domain in the insect flight simulation, Ly, which
is arbitrary as long as the insect fits in the domain. Varying Ly is equivalent
to changing the animal’s size relative to the length scales of the turbulence
field. Thus the parameter Ly needs to be large enough to reduce the effect
of periodicity in the lateral direction and small enough to produce turbulent
length scales similar to natural perturbations. We thus used an intermediate
value for the lateral size of 4R.
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4.3.3 Numerical wind tunnel with turbulent inflow

The precomputed isotropic turbulence fields can now be used as turbulent
inflow condition for a “numerical wind tunnel”. Figure 4.3.3 illustrates the
devised setup. A turbulent velocity field is rescaled according to eqn. (4.3.5),
and upsampled by zero padding in Fourier space to the target resolution,
since the latter is higher than the turbulence resolution. In the inlet section
of the actual setup, the turbulent velocity field is superimposed on a laminar
free stream velocity in axial direction, u∞ = (u∞, 0, 0). The inflow velocity
imposed through penalization thus reads

us (x, y, z, t) = u∞ + u′ (x− u∞t, y, z) .

The turbulence field is periodic, and thus we treat the x-coordinate in a peri-
odic fashion, therefore we feed in the same field several times. The repetition
time is Trep = Ly/u∞. The upsampled turbulence field is interpolated lin-
earily in the x-direction. At the outlet, we gradually damp the vorticity using
a sponge. The basic idea of generating inflow perturbations by pre-computed
HIT has also been reported in [104] in the context of “classical” simulations,
i.e., without volume penalization and with strictly imposed Dirichlet inflow
conditions. The strategy has also been extended to use wall-bounded pipe
turbulence instead of HIT as turbulent inflow condition for jets, e.g., in [2].

We now place the bumblebee model in the turbulence-enhanced numerical
wind tunnel.

4.3.4 Results

We studied the model insect in turbulent inflow considering four different
turbulence intensities, with turbulent Reynolds number Rλ = λu′/ν ranging
from 90 to 228. In the latter equation u′ is RMS velocity, λ the Taylor micro
scale, which is a length scale of turbulent eddies in the inertial range and ν
the kinematic viscosity of air. Properties of the inflow data are summarized
in table 4.3. For all tested intensities, the Kolmogorov length scale ℓη of dis-
sipating eddies is significantly smaller than the wing length and the length
scale of energy-carrying structures, the integral scale Λ, is similar to the wing
length. The Taylor micro scale λ varies between 0.25 and 0.1, respectively.
Since turbulence is erratic, we performed a number of simulation runs NR in-
creasing from 4 to 27 for increasing Rλ in order to obtain statistically reliable
mean values and variances. Fig. 4.3.5 presents the slab-averaged turbulence
intensity

〈Tu〉 =
ˆ y0+1.3R

y0−1.3R

ˆ z0+1.3R

z0−1.3R
Tu(x, y, z)dydz/ (2.6R)2
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Figure 4.3.3 – Numerical wind tunnel with turbulent inlet. The precomputed
isotropic turbulence field (bottom right) is upsampled in Fourier space to the res-
olution of the flight simulation, and rescaled according to eqn (4.3.5). In the inlet
section of the wind tunnel, is it superimposed to the laminar mean flow.

as a function of the downstream distance. The black line corresponds to the
laminar inflow condition. The subdomain used for averaging is centered
around the insect (y0 = 2R, z0 = 2R). The data for laminar inflow (black
line) show that the bumblebee model generates relative peak intensities of
0.25 at the wings and mean intensities of approximately 0.16 at five wing
lengths downstream distance.

Fig. 4.3.4E-F illustrates the flow around the insect under turbulent inflow
conditions for Tu = 0.33 and 0.99 relative intensity and shows that weak
turbulence is associated with relatively coarse flow structures in the inflow.
By contrast, flow patterns near the wings are similar in size and intensity to
the structures present in the inflow at strong turbulence.

The considered range of turbulent Reynolds numbers covers the flow regime
that a bee typically encounters in its natural habitats. It has been reported,
for example, that bumblebees fly at wind speeds of 8 m/s [178]. At this
speed, natural habitats with cylindrical trees of about 10 cm in diameter yield
turbulent Reynolds numbers in the range considered in the simulation. Fig.
4.3.4B-D shows that lift, thrust and power of single simulation runs at turbu-
lent conditions differ from the measures obtained for the laminar case. How-
ever, the generic features of the data, i.e., the location of peaks and valleys are
similar under all tested flow conditions. Wingbeat-averaged and ensemble-
averaged data including statistics are shown in table 4.2. These mean values
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Figure 4.3.4 – Bumblebee in turbulent flow. (A) Visualization of the prescribed
wingbeat, where T is period time. (B-D) Time evolution of horizontal (B) and ver-
tical (C) force, and aerodynamic power (D) under laminar, moderately turbulent
(Tu = 0.33) and highly turbulent (Tu = 0.99) conditions. Circular markers repre-
sent cycle-averaged values. (E-F) Visualization of flow structures by means of iso-
surfaces of the absolute vorticity ‖ω‖, normalized by the wingbeat frequency f . (E)
Perspective view for a realization with Tu = 0.33. The purple and blue isosurfaces
visualize stronger and weaker vortices, respectively, and weaker vortices are shown
only for 3.7R ≤ y ≤ 4R for visibility. (F) Top view, with the upper half showing
flow at elevated turbulent (Tu = 0.99), and the lower half at moderate turbulent
(Tu = 0.33) intensity. Weaker vortices, i.e., smaller values of ‖ω‖, are shown only
for 0 ≤ z ≤ 0.3R for visibility.
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Figure 4.3.5 – Slab averaged turbulence intensity as a function of the axial coordi-
nate, with the insect drawn to scale for orientation. Black: laminar case. Red, blue,
green and orange lines correspond to Tu equal to 0.17, 0.33, 0.63 and 0.99, respec-
tively. The gray shaded areas mark regions where the in- and outflow is imposed.
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Figure 4.3.6 – Top: Isosurface of normalized absolute vorticity, ‖ω‖ = 100, in
the vicinity of the right wing at t/T = 0.3. Snapshots of instantaneous vorticity
distribution during laminar and turbulent inflow is shown on the left. Phase- and
ensemble averaged vorticity from 16 and 108 wing beats and at Tu = 0.17 and
Tu = 0.99, respectively, is shown on the right. Bottom: averaged ‖ω‖ = 50 isolines
at mid-span for all values of Tu. The leading edge vortex persists on average even
under strongest inflow perturbations.
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Tu
Forward force Fh Vertical force Fv Aerodynamic

power Paero

x± δ95 σ x± δ95 σ x± δ95 σ

0 −0.08 0 1.02 0 84.05 0

0.17 −0.10± 0.04 0.08 1.04± 0.09 0.18 83.72± 1.77 3.61

0.33 −0.06± 0.09 0.18 1.10± 0.10 0.21 85.02± 2.03 4.14

0.63 +0.02± 0.10 0.29 1.04± 0.13 0.40 83.32± 3.13 9.57

0.99 −0.10± 0.07 0.37 1.01± 0.10 0.54 85.44± 1.98 10.47

Tu
Moment Mx (roll) Moment My (pitch) Moment Mz (yaw)

x± δ95 σ x± δ95 σ x± δ95 σ

0 0.00 0 0.01 0 0.00 0

0.17 −0.01± 0.01 0.03 +0.00± 0.02 0.03 −0.01± 0.02 0.03

0.33 −0.01± 0.04 0.08 −0.01± 0.03 0.06 +0.04± 0.02 0.05

0.63 −0.02± 0.04 0.12 +0.02± 0.04 0.12 +0.07± 0.04 0.13

0.99 +0.01± 0.04 0.19 −0.04± 0.03 0.13 −0.03± 0.04 0.21

Table 4.2 – Aerodynamic forces, power and moments obtained in the numerical ex-
periments. Forces are normalized by the weight mg, moments by mgR, power is
given in W/kg body mass.

demonstrate only tiny differences between turbulent and laminar flow condi-
tions and even at the strongest turbulent perturbation, the bumblebee model
generates aerodynamic forces close to those derived during unperturbed, lam-
inar inflow, at virtually the same energetic cost. This aerodynamic robustness
of insect wings is in striking contrast to the properties of streamlined air-
foils that are highly sensitive to the laminar-turbulent transition. Fig. 4.3.6
shows the vortical structure at the wing at 0.3 stroke cycle, represented by
the ‖ω‖ = 100 isosurface of normalized vorticity ω = (∇× u) / f . The lam-
inar case is a snapshot of the flow field, while turbulent data are also phase-
averaged over Nw independent strokes for each value of Tu (see table 4.3).
Although turbulence alters shape and size of the wing’s tip vortex, the leading
edge vortex remains visible in phase-averaged flow fields even at maximum
inflow turbulence intensity.

Previous studies highlighted that turbulent flows may destabilize body pos-
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Rλ Tu ℓη λ Λ NR Nw

90.5 0.17 0.013 0.246 0.772 4 16

130.1 0.33 0.008 0.179 0.782 4 16

177.7 0.63 0.005 0.129 0.759 9 36

227.9 0.99 0.004 0.105 0.759 27 108

Table 4.3 – Parameters of inflow turbulence used in numerical experiments. The
Kolmogorov length scale ℓη , the Taylor micro λ and the integral scale Λ are normal-
ized by the wing length R. For each value of Tu, a number of NR realizations has
been performed, yielding in total Nw statistically independent wingbeats.

ture of an insect [24]. Roll, in particular, is prone to instability because mo-
ment of inertia about the roll axis is approximately four times smaller than
about the yaw and pitch axes. Our results in table 4.2 show that mean aerody-
namic moments about yaw, pitch, and roll axes do not change with increasing
turbulence. However, we observed characteristic changes in moment fluctua-
tion. Assuming that during perturbation the insect begins to rotate from rest
at time t0, we may approximate the final angular roll velocity from,

Ωroll(t0 + τ) =
1

Iroll

ˆ t0+τ

t0

Mroll(t)dt, (4.3.6)

with Mroll the roll moment, Iroll the roll moment of inertia with respect to the
body x-axis, and τ the response delay (see below) [56].

The maximum turbulence-induced roll velocity that a freely flying bumblebee
encounters depends on the reaction time of the animal in response to changes
in body posture. Many insects compensate for posture perturbations by asym-
metrically changing their bilateral wing stroke amplitude. Since bumblebees
have no hind wing-condensed, gyroscopic halteres, the response delay mainly
depends on the speed with which visual information from the retina of the
compound eyes is converted into neural commands for motor control. Mean
visual transduction in insects typically lasts 50 ms [69], which converts into
10 stroke cycles at 200 Hz stroke frequency in fruit flies [138] and 7.6 cycles
at 152 Hz in the honeybee [170]. Previous studies on freely flying honeybees,
however, reported slightly shorter response delays of approximately 20 ms
or 4.5 stroke cycles, suggesting the use of ocellar pathways for body stability
reflexes in this species [170].

To predict the maximum delay that allows a bumblebee to recover from
turbulence-induced roll, response delay in equation (4.3.6) was 2, 3, and
4 stroke periods (Fig. 4.3.7). Fig. 4.3.7 shows how the RMS final roll ve-
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Figure 4.3.7 – RMS value of the final roll angular velocity Ωroll versus the inflow
turbulence intensity, calculated over all flow realizations. Different colors corre-
spond to different response delay times τ. The gray shaded area represents the limit
of sensor saturation [138, 170], see text for details.

locity increases under these conditions with increasing turbulence intensity.
Behavioral measurements previously showed that the maximum body angu-
lar velocity from which a bee may recover in free flight amounts to approxi-
mately 3000 ◦/s (gray area in Fig. 4.3.7)[170]. Fig. 4.3.7 thus predicts that
bumblebees recover form roll-induced turbulence intensities of up to 60% as-
suming response delays between two and four stroke periods. By contrast,
posture recovery at turbulence intensities of 99% requires reduced reaction
times of not more than two cycle periods. The latter finding implies that
bumblebees cannot achieve stable flight at 99% turbulence intensity, which is
in agreement with experimental observations of animals crashing in elevated
turbulent flows when flying freely [24].

4.3.5 Conclusions and outlook

Our high-resolution numerical experiments of a bumblebee model in per-
turbed forward flight highlighted several unexpected results with respect to
alterations in aerodynamic forces, flight stability, and aerodynamic power ex-
penditures. The simulations imply that even strongest background turbulence
does not vitally harm structure and efficacy of the lift-enhancing leading edge
vortex and thus averaged forces and moments are almost identical compared
to laminar flow conditions. Turbulent inflow conditions are thus of little sig-
nificance for the overall flight performance of an animal in tethered flight.
However, these fluctuations cause temporal transient instabilities. Thus, in a
freely flying insect in which the body may rotate, absolute angular velocities
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about yaw, pitch, and roll axes might reach elevated values, which in turn
would require decreasing visuo-motor response delays for body stabilization
with increasing turbulence. Owing to its small moment of inertia, roll is es-
pecially prone to turbulence-induced fluctuations. An important consequence
of body roll is the deflection of the wingbeat-averaged resultant aerodynamic
force from the vertical direction.

Thus, at large roll angles, the animal must increase the magnitude of this
force so that its vertical component can support the weight of the insect. In-
cidentally, it has been reported that hummingbirds increase the wingbeat fre-
quency and amplitude [136]. The finding that an increase in the turbulence
intensity, superimposed to laminar flow, has no significant effect on power
expenditures for tethered flight is most surprising and significant with respect
to flight endurance and migration of insects. Since it has been suggested that
flight of insects is limited by power rather than force production [40], any
biological and physical mechanisms that help an insect to limit its wing and
body drag-dependent power expenditures is of great value and may increase
the animal’s biological fitness.



Part III

Fluid-structure interaction
with flexible obstacles





Chapter 5

Extension of the numerical
method for flexible obstacles

The content of this chapter is adopted from [44], [46] and [47].

After considering insects with rigid wings, we now turn our attention to fluid–
structure interaction problems that involve deformable solids. The collective
long-time goal of these efforts is the simulation of insects with flexible wings.
The solid mechanics of insect wings, however, is a vast research field on its
own, with little data available. For instance, in one of the few available stud-
ies, Combes et al. [22, 23] presented flexibility measurements, together with
a simplified finite-elements model that takes into account the wing venation
by anisotropic (but continuous) local rigidity. Taking realistic, flexible wings
into account is thus beyond the scope of this work, and we will resort to
simplified solid models instead.

This chapter is dedicated to development and validation of the numerical
method, applications will be presented in chapters 6-7. This chapter is or-
ganized as follows. In section 5.1, we derive the non-linear beam equation
we use to model chord- and spanwise flexibility, and discuss its numerical so-
lution as well as a validation case. We then proceed to the core problem in
FSI simulations, the coupling of fluid and solid in section 5.2. The coupled
approach is then validated in two and three spatial dimensions in section 5.3.
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Figure 5.1.1 – Geometrical definitions of a rectangular plate, which is flexible in the
s-direction and rigid in the r-direction.

5.1 Solid model: non-linear beam equation

Solving fluid–structure interaction problems requires a suitable mathematical
description of the flexible object under consideration. In this work we focus
on solids that are flexible in one direction only, considering the remaining
directions to be perfectly rigid. This simplification of the solid mechanics
part, which is actually a three-dimensional continuum as is the fluid, allows
for example to separate the effects of chord- and spanwise flexibility. Insect
wings are, for example, much more flexible in the chord- than in the spanwise
direction [22]. Thus, we focus on a well-controlled solid model with only few
parameters and, owing to its one-dimensionality, negligible computational
efforts.

In the following, we will derive the governing equations for a one-dimensional
beam composed of linear-elastic material, similar to [108]. We assume neg-
ligible structural damping and consider the beam to be inextensible but with
finite flexural stiffness. Large deflections are admissible, thus the model is
geometrically non-linear. Similar models have been used in [110, 111], as-
suming in addition negligible inertia.

As for the fluid, the governing solid model equation will be formulated in
dimensionless units, using the scales L, T, U = L/T and M for length, time,
velocity and mass, respectively. As the fluid density is always normalized to
unity, the mass scale is given by M = ̺ f L3. When using the solid model
together with the fluid, we always normalize the beam length ℓ to unity, i.e.,
L = ℓ. The basic geometrical definitions of the plate are illustrated in figure
5.1.1.

To derive the beam equation, we consider an infinitesimal beam element as
illustrated in figure 5.1.2. The internal stresses are represented by the normal
and tangential forces (N and T, respectively) and the bending moment M.
The external forces are the gravity G in negative y(g) direction and the pres-
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Figure 5.1.2 – Derivation of the beam equation. The slender, inextensible beam is

clamped in the relative reference frame x(b), y(b), which is translated by xcntr and
rotated by α with respect to the global reference frame. The governing equations are
derived considering the beam element (inset) with the forces and moments acting on

it. Gravity is assumed in negative y(g) direction.

sure force P. The latter is the interface to the fluid model, since the pressure
jump across the beam, [p]±, is dictated by the flow conditions. The shear
stress on the surface, likewise resulting from the fluid, is denoted by τ. It can
often be neglected. The forces and moments are described in the complex
plane,

N =N ι eιΘeια T =T eιΘeια P =− [p]± ι ds eιΘ eια

G =− g µ ds ι τ = [τ]± ds eιΘeια

where ι2 = −1. The angles Θ (s, t) and α (t) are the local deflection angle
and the orientation of the relative system, respectively, see figure 5.1.2. All
forces and moments are described in the global reference frame, but the su-
perscript (g) has been dropped for ease of notation. The parameter µ is the
dimensionless mass per unit length of the beam,

µ =
̺s A

M/L
=

̺s A

̺ f L2 ,

where A is the cross section and ̺s the solid density in
[
kg/m3]. We assume

µ to be constant along the beam. Denoting the position of the beam element
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with z, Newtons second law reads

µ ds z̈ = ∑ F

µ z̈ = ∂s (T + N)− ι µg− ι [p]± eιΘeια + [τ]± eιΘeια (5.1.1)

The normal force N can be eliminated using the torque balance for the beam
section. The inertial moment of this element scales like ds2 and can therefore
be neglected, yielding

N + ∂s M = 0

for the torque balance. The moment can be linked to the curvature using the
Euler-Bernoulli assumption for slender beams,

M = η∂sΘ,

where η is the dimensionless bending rigidity

η =
EI

ML3/T2 =
EI

̺ f L3U2

with EI in
[
Nm2]. Note for a one-dimensional equation, Youngs modulus

has to be corrected by the Poisson ratio, Ẽ = E/(1− n2) [90]. Combing the
preceding equations with eqn. (5.1.1) yields

z̈µe−ια = eιΘ
(

∂sT + ιT∂sΘ− ιη∂sssΘ + η∂ssΘ∂sΘ− ι [p]± + [τ]±
)

(5.1.2)

−ιgµe−ια

The beam is considered an inextensible structure. Therefore the beam el-
ement can only rotate, and the derivative of the coordinate in the relative
system is directly related to the local deflection angle:

∂sz(b) = eιΘ. (5.1.3)

The position of the beam element in the global reference frame is z = zcntr +

eιαz(b), thus we find for the velocity and acceleration

ż = żcntr + eια
(

ż(b) + ια̇z(b)
)

(5.1.4)

z̈ = z̈cntr + eια
(

ι
(

z(b)α̈ + 2α̇ż(b)
)
+ z̈(b) − z(b)α̇2

)
(5.1.5)

In order to combine these equations with the inextensibility condition (5.1.3)
we need to derive z̈ with respect to s,

∂s z̈ = eια
(

ι
(

∂sz(b)α̈ + 2α̇∂s ż(b)
)
+ ∂s z̈(b) − ∂sz(b)α̇2

)
,
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and the inextensibility condition (5.1.3) with respect to time,

∂sz(b) = eιΘ ∂s ż(b) = ιΘ̇eιΘ ∂s z̈(b) = eιΘ
(

ιΘ̈− Θ̇2
)

.

We thus obtain the total acceleration

∂s z̈ = eιαeιΘ
(

ι
[
α̈ + Θ̈

]
−
[
α̇ + Θ̇

]2) .

Combined with eqn. (5.1.2) and after separation of real and imaginary part,
we eventually obtain the beam equation:

∂2T

∂s2 − T

(
∂Θ

∂s

)2

= − [p]±
∂Θ

∂s
− 2η

∂Θ

∂s

∂3Θ

∂s3 − η

(
∂2Θ

∂s2

)2

· · ·

−µ
(
Θ̇ + α̇

)2 − ∂ [τ]±

∂s
(5.1.6)

µΘ̈ + µα̈ +
∂ [p]±

∂s
= −η

∂4Θ

∂s4 +

(
T + η

(
∂Θ

∂s

)2
)

∂2Θ

∂s2 · · ·

+2
∂T

∂s

∂Θ

∂s
+ [τ]±

∂Θ

∂s
, (5.1.7)

which is a partial differential equation of second order in time and fourth or-
der in space. Similar to the incompressible Navier–Stokes equations, we are
thus left with one evolution equation and one constraint without time deriva-
tive. Parametrizing the beam with the local deflection angle Θ is numerically
beneficial, since any set of (discrete) angles {Θ}i results in the same length.
From Θ and Θ̇, the position and velocity vectors can be obtained using

xc (s) = xcntr +

ˆ s

0

(
cos α cos Θ− sin α sin Θ

cos α sin Θ + sin α cos Θ

)
ds (5.1.8)

us (s) = ẋcntr +

ˆ s

0

(
cos α

(
−Θ̇ sin Θ− α̇ sin Θ

)

cos α
(
−Θ̇ sin Θ + α̇ cos Θ

)
)

ds · · · (5.1.9)

+

ˆ s

0

( − sin α
(
−Θ̇ sin Θ + α̇ cos Θ

)

+ sin α
(
−Θ̇ sin Θ− α̇ sin Θ

)
)

ds.

We consider the beam with clamped-free boundary conditions, i.e., at the
leading edge, the position and thus the acceleration is prescribed and a zero-
slope condition is set in the relative reference frame. Pitching motion can
be imposed by rotating the relative system. The boundary conditions at the
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leading edge are thus:

Θ = 0
∂T
∂s + η ∂2Θ

∂s2
∂Θ
∂s = µ (ẍcntr cos α + ÿcntr sin α · · ·

+g sin α)− [τ]±

T ∂Θ
∂s − η ∂3Θ

∂s3 = µ (ÿcntr cos α− ẍcntr sin α · · ·
+g cos α + fext) + [p]±





at s = 0, (5.1.10)

where fext is an external force defined later. At the trailing edge, a free end is
assumed, thus

T = 0
∂Θ
∂s = 0

∂2Θ
∂s2 = 0





at s = 1. (5.1.11)

The above derivation of the solid model assumes constant coefficients η and
µ along the beam. The corresponding set of equations, without derivation,
for the case of non-constant coefficients, i.e., η = η (s) and µ = µ (s), can be
found in appendix B.

5.1.1 Numerical solution

The set of equations (5.1.6-5.1.7, 5.1.10-5.1.11, 5.1.8-5.1.9) are solved nu-
merically using second order finite difference approximations of the differen-
tial operators. Special care has to be devoted to time integration. First, the
equations are stiff and require an implicit time marching scheme. Second, the
eigenvalues of the discrete (linearized) operator lie on the imaginary axis,
which happens to be the stability limit of the second order Crank-Nicolson
scheme which was used in previous works [44]. Hence we employ a second
order backward differentiation scheme with variable time steps [9]:

wn+1 =
(1 + ξ)2

1 + 2ξ
wn − ξ2

1 + 2ξ
wn−1 +

1 + ξ

1 + 2ξ
∆tn f

(
wn+1

)
(5.1.12)

where ξ = ∆tn/∆tn−1. The vector w = ( Θ Θ̇ ) has been introduced to
rewrite equation (5.1.7) as a first order system and f

(
wn+1) is the corre-

sponding right-hand side. All terms are treated implicitly and the inextensi-
bility constraint (5.1.6) is fulfilled at the new time level. The resulting non-
linear system is solved using Newton-Raphson iterations, with a relative error
below 10−10 as stopping criterion. The Jacobian is computed analytically and
hard-coded in the solver. Typically, three iterations are performed until the
stopping criterion is reached. Details on the discretization in space and time,
as well as the Jacobian can be found in Appendix B. In the fluid–structure
interaction case, the time step ∆t is determined by the fluid.
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x-displacement
[
×10−3] y-displacement

[
×10−3]

Reference [165] −14.305± 14.305 [1.0995] −63.607± 65.160 [1.0995]

Present −13.306± 13.356 [1.1031] −63.734± 65.263 [1.1031]

Relative difference 6.98%± 6.6% [0.33%] 0.2%± 0.16% [0.33%]

Table 5.1 – Validation of the solid model, results for a beam oscillating in vacuum in
a gravity field. Data given as mean± amplitude[frequency].

5.1.2 Quantitative validation of the solid model

The solid model described above is relatively simple, compared to the three-
dimensional Navier–Lamé equations. We test its accuracy using a benchmark
proposal by Turek & Hron [165], case CSM3, where an elastic structure of
length ℓ = 0.35 and thickness hb = 0.02 is considered. The dimensionless
numbers characterizing our model are found

µ =
̺shbℓ

̺ f ℓ
2 = 0.0571 η =

Eℓh3
b/12(1− n2)

̺ f ℓ
3U2 = 0.0259

where we arbitrarily set the width of the beam to ℓ and U to 1 m/s. The beam
is considered in vacuum and performs undamped oscillations in a gravity field
with g = 0.7. In the limit of small deflections, linearized theory predicts the
first eigenfrequency to be f1 = 3.516

√
η/µ/2π = 1.077, see, e.g., [48].

Reference data is given as mean±amplitude, where mean = 1
2 (max + min)

and amplitude = 1
2 (max−min). Present and reference data is assembled in

table 5.1. The comparison is favorable, and the difference in the x-displacement
can be explained by the inextensibility assumption, whereas [165] considered
a slightly compressible material. For the vertical displacement and the oscil-
lation frequency, the relative difference is below 0.33%. We note that though
the vertical displacement is 37% of the beam length, the oscillation frequency
agrees to within 1% with the prediction by linear theory.

5.2 Coupling fluid and solid

5.2.1 Construction of the mask function for flexible objects

To include the flexible object described above in the fluid solver, the smoothed
χ function and the solid velocity field us are required on the Eulerian fluid
grid. As described in section 2.3, we rely on the signed distance function for
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Figure 5.2.1 – On the construction of the mask function for flexible obstacles. Left:
perspective view in three-dimensional space. Right: two-dimensional illustration in
the relative system. The beam is composed of a centerline (black) and the thin solid

layer (cyan). The centerline is given as a set of points {X(b)}j, the inset shows one
segment and the geometrical definitions used in algorithm 5.1

the former task. Figure 5.2.1 (left) illustrates the general setup. The span-
wise flexible plate is defined in the relative system x(b), which is defined as
described in section 3.2.1 for insects. We allow for all six degrees of freedom.
The beam is given as a set of coordinates {X(b)}j and we approximate the
centerline by a linear Bézier curve. The spacing between two points on the
beam, ∆s, is of about the same size as the fluid grid spacing ∆x, which is why
the piecewise linear approximation is justified.

Algorithm 5.1 describes how the distance to the beam centerline, δ, is com-
puted for each point on the Eulerian fluid grid. It is easier to first compute
the distance to the centerline, which is greater or equal to zero, and then
to substract the beam thickness tb, than to directly compute the signed dis-
tance itself. Algorithm 5.1 cycles over all Eulerian fluid nodes. Points outside
the bounding box are skipped to save computing time. For each remaining
Eulerian node, we check the distances to all Ns solid nodes. If the distance
is small enough, we detect whether the point in question lies on a segment,
as illustrated in the inset in figure 5.2.1, or in the hinges between segments.
The solid velocity is interpolated linearly on the segments. Non-rectangular
shapes can be taken into account by introducing the functions bbot(s) and
btop(s) in the same spirit as described in section 3.2.4. The proposed al-
gorithm is local, i.e., each MPI process executes it independently with no
intra-processor communication involved, and the total computational effort
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is below 5% of the total cost of a simulation.

5.2.2 Force interpolation

The solid deformation is dictated by the balance of inertia, internal and ex-
ternal forces. The latter contain the fluid forces, through which the fluid
interacts with the solid. In the opposite way, the resulting deformation alters
the fluid flow. For the solid deformation, we assume viscous fluid tension to
be negligible in front of the pressure. The total aerodynamic forces and mo-
ments, however, are always computed using the volume integration discussed
in section 2.4, and thus include viscous contributions.

Figure 5.2.2 illustrates the beam in a three-dimensional setup; it is thus a
plate with one rigid direction. The plate is composed of two surfaces, on
which the scalar-valued pressure is interpolated. The resulting force is normal
to the surface and points to the suction side, where the lower pressure is
encountered.

In the one-dimensional model eqn (5.1.6-5.1.7), the pressure is a line-load,
i.e., it is a force per unit length. The two-dimensional surface pressure distri-
bution, as shown in figure 5.2.2, is thus integrated over the r-direction,

[p]± (s) =

ˆ r=btop(s)

r=bbot(s)

(
ptop (s, r)− pbottom (s, r)

)
dr

Since the computational domain is usually split among CPU, the interpolation
requires a layer of ghost nodes around the sub-domains to be synchronized
between processes prior to interpolation.

For the actual interpolation, we use a technique borrowed from the immersed-
boundary community, namely the regularized delta functions D. Their usage
has been proposed by Peskin already [130]. Since then, different functions
have been devised, among which we use the one proposed by Yang et al.
[185],

D (ξ) =





3
8 + π

32 −
ξ2

4 |ξ| ≤ 0.5
1
4 + 1−|ξ|

8

√
−2 + 8 |ξ| − 4ξ2 · · ·

− 1
8 arcsin

(√
2 (|ξ| − 1)

)
0.5 ≤ |ξ| ≤ 1.5

17
16 − π

64 −
3|ξ|

4 + ξ2

8 · · ·
+ |ξ|−2

16

√
16 |ξ| − 4ξ2 − 14 · · ·

+ 1
16 arcsin

(√
2 (|ξ| − 2)

)
1.5 ≤ |ξ| ≤ 2.5

0 2.5 ≤ |ξ| ,
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Algorithm 5.1 Given the beam nodes {X(b)}j and the orientation of the rela-
tive system, construct the signed distance function δ (x) and the solid veloc-
ity field us (x). For the sake of brevity we denote

√
⌈·⌉ =

√
max (·, 0).

1: Set dmax =
√

∆s2 + (tb + hsmth)
2

⊲ largest possible distance of a fluid node to beam
centerline

2: for ix = 0, nx− 1; iy = 0, ny− 1; iz = 0, nz− 1 do
3: Get coordinates of point xix,iy,iz

4: Transform to body system x
(b)
ix,iy,iz = Mbody

(
xix,iy,iz − xcntr

)

5: Set δix,iy,iz = ∞, us,ix,iy,iz = 0 ⊲ Initialization

6: if x
(b)
ix,iy,iz is in bounding box then ⊲ Saves computing time

7: for is = 0, ns− 2 do ⊲ Loop over beam segments
8: a← AC
9: b← BC

10: if a ≤ dmax or b ≤ dmax then ⊲ One node of segment is close enough
11: b← AB

12: h←
√⌈

a2 − a2+c2−b2

2c

⌉

13: c1 ←
√
⌈a2 − h2⌉

14: c2 ←
√
⌈b2 − h2⌉

15: if a ≤ dmax and b ≤ dmax and c1 ≤ c and c2 ≤ c then ⊲ On segment
16: if h ≤ δix,iy,iz then
17: δix,iy,iz ← h
18: s1 ← j∆s
19: s2 ← (j + 1)∆s
20: s← s1 + c1

21: us,ix,iy,iz ← u
(b)
j + s−s1

s2−s1

(
u
(b)
j+1 − u

(b)
j

)
⊲ Linear Interpolation

22: end if
23: else ⊲ Not on segment, but possibly hinge
24: if a<b then ⊲ Left hinge is closer
25: if a ≤ δix,iy,iz then
26: s← j∆s
27: δix,iy,iz ← a

28: us,ix,iy,iz ← u
(b)
j

29: end if
30: else if b<a then ⊲ Right hinge is closer
31: if b ≤ δix,iy,iz then
32: s← (j + 1)∆s
33: δix,iy,iz ← b

34: us,ix,iy,iz ← u
(b)
j+1

35: end if
36: end if
37: end if
38: end if
39: end for
40: δix,iy,iz ← δix,iy,iz − tb ⊲ Shift zero-isosurface from centerline to outer contour:
41: δix,iy,iz ← max(δix,iy,iz, z(b) − btop(s), bbot(s)− z(b)) ⊲ Take finite width into account:
42: end if
43: end for
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Figure 5.2.2 – Surfaces forces on the beam in a 3D configuration, where it becomes a
plate with one rigid direction (r). The pressure is interpolated on the top- and bottom
surfaces, and the resulting force is normal to the surface.

where ξ = x/∆x. This function is designed to reduce spurious oscillations in
the interpolated values, which is desirable for fluid–structure interaction. The
three-dimensional function is constructed as tensor product of three functions
of one variable,

D (x) = D
( x

∆x

)
D

(
y

∆y

)
D
( z

∆z

)
,

and the interpolated pressure on a point X on the interface then reads

p (X) = ∑ pix,iy,izD
(

xix,iy,iz − X
)

. (5.2.1)

5.2.3 Time stepping of the coupled system

We previously described the necessary modules for the simulation of fluid
structure interaction. On the one hand we have the fluid, which takes into ac-
count the time-varying solid geometry though the volume penalization method.
On the other hand, we derived the solid model which governs the structural
mechanics part. The coupling between both modules is achieved through
the construction of the mask function χ and solid velocity field us, and the
interpolation of the pressure on the solid’s surface.

In the following, we describe how the coupled fluid–solid system is advanced
in time. We start by noting that the time discretizations for the fluid and
solid part are fundamentally different. The flow field is, in general, three-
dimensional and discretized with an explicit time marching scheme. An im-
plicit scheme would require the solution of a large non-linear system, which
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is computationally expensive. The Fourier discretization would furthermore
entail dense matrices instead of sparse ones, since the Fourier transformation
is non-local. The solid model equation on the other hand is numerically very
stiff, owing to the fourth order derivative in eqn (5.1.7), which restricts the
time step of explicit schemes to ∆t = C∆s4 where C is a constant depend-
ing on the rigidity η and the time marching scheme. An implicit scheme is
therefore required.

This mélange of time discretizations has been employed by other researchers
[51, 153], and this class of methods is usually termed partionned methods.
Their advantage lies in the high degree of modularization, which allows great
flexibility. However, the time discretization of the coupled system is subject
to instabilities, even if, for a given ∆t, both individual solvers are stable.

The source for these numerical problems lies in the temporal treatment of
the interface condition, see e.g., the reviews [51, 153]. Most contributions
consider Dirichlet-Neumann conditons, for the displacement and the stresses,
respectively [51, 89, 142, 153], but other conditions are possible, namely
Robin-Neumann [6]. In the Dirichlet-Neumann case, the interface conditions
read

∂X(t)

∂t
= u (X(t), t) on ∂Ωs

σ f (X(t), t) = σs (X(t), t) on ∂Ωs

where we denote the Lagrangian position of the interface with X. Both, con-
tinuity of velocity and stresses explicitly depend on time, and they should
ideally be satisfied at the old and new time levels. In monolithic solvers, the
coupled system is evolved as a whole and the interface conditions are indeed
satisfied precisely at both time levels, see e.g., [62, 73]. These approaches are
unconditionally stable and energy conserving, but do not allow modulariza-
tion of the fluid and solid solvers [153].

The stability of partionned methods, as we employ here, is reportedly [19,
51, 89, 153, 155, 169] strongly dependent on the artificial added mass effect,
which depends on the density ratio ̺s/̺ f . Smaller density ratios require iter-
ative stabilization. In the following, we describe the two partionned coupling
schemes used in the present work, the semi-implicit staggered scheme and an
iterative scheme.

5.2.3.1 Semi-implicit staggered scheme

Partionned coupling schemes are commonly divided into strong (or implicit)
and weak (or explicit) coupling, depending on how the interface conditions
are treated. In a weak coupling scheme, the equations are advanced in a
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staggered manner, i.e., advancing first the fluid and then the solid. These
schemes are popular in the aeroelasticity community, see e.g., [50], because
of their stability for the large density ratios typically involved in this field. The
staggered time advancing however implies a phase lag in both fields, which is
equivalent to the explicit treatment of either or both interface conditions [51].
The simplest scheme is the sequential staggered scheme, where both solvers
are advanced in parallel and exchange the coupling information only a the
beginning of a time step. We found this scheme to be inaccurate and unstable
for our problems, and instead employ a semi-implicit staggered scheme.

Algorithm 5.2 Semi-implicit staggered scheme for the time advancement of
coupled fluid–structure problems.
Require: Fluid velocity field un and solid state Sn at time tn

1: Construct mask function χn and solid velocity field un
s from solid state

Sn (see Algorithm 5.1)
2: Compute source terms for the fluid f n = f (un, χn, un

s )

3: Advance fluid to new time level un → un+1 using the AB2 scheme
4: Compute static pressure pn+1 = p(un+1, χn, un

s )
5: Interpolate pressure jump [p]±(tn+1) = I(pn+1)
6: Advance solid state Sn → Sn+1 using [p]±(tn+1) and the BDF2 scheme
7: return New fluid state u+1 and new solid state Sn+1

The present formulation of this scheme is presented in algorithm 5.2. The
fluid is discretized using the Adams-Bashforth scheme with integrating factor,
as described in 2.8, and the solid using the fully implicit BDF scheme in eqn.
(5.1.12). The latter evaluates the RHS only at the new time level, therefore,
the interpolated pressure jump at the old time level tn is not required in algo-
rithm 5.2. The computation of the pressure at the new time level requires an
additional evaluation of the right hand side of the penalized Navier–Stokes
equations. The weak coupling character is visible in line 4 of the algorithm,
where the source terms are computed with the solid model from the previous
time step. This is equivalent to treating the dynamic coupling condition (i.e.,
the continuity of stresses) in an implicit way, while the displacement condi-
tion is treated explicitly. A similar scheme has for instance been presented in
[105]. Various improvements of this method have been proposed, aiming at
stabilization for light structures [153]. The effect of small density ratios on
the stability of this scheme has been analyzed for example in [19, 54].

5.2.3.2 Iterative scheme

The semi-implicit staggered scheme described above is efficient since it re-
quires only two right hand side evaluations per time step. It is however un-
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stable if the structure is too light compared to the fluid.

To alleviate this restriction, iterative schemes have been proposed, aiming at
satisfying the coupling condition at the new time level as well. Most algo-
rithms are based on fixed-point iterations (e.g., [89, 184]), or Newton itera-
tions [64]. Van Brummelen showed analytically, using a simplified setup, that
iterations can alleviate stability problems, but do not necessarily cure them
under all conditions [169]. He found that the added mass of a compressible
fluid scales with the time step, while it approaches a constant in incompress-
ible fluids. As a consequence, even iterative, strong coupling schemes can
sometimes be unstable, if incompressible fluid is considered. However, this
type of scheme has been successfully applied to a wide range of problems,
e.g., in [184] to elastically mounted cylinders or in [89] to flexible pipes. In
compressible fluid–structure interaction, Storti et al. [157] used the fixed
point iteration to compute a channel with flexible walls in the supersonic
regime.

Algorithm 5.3 presents the iterative coupling scheme used in the present
work. If only one iteration is performed, we recover the semi-implicit scheme
described above, as it is the case for most iterative schemes of this type (e.g.,
[173]). The basic scheme thus consists of repeating the semi-implicit scheme,
until convergence is achieved. However, poor convergence is observed in the
literature [51, 89, 153, 169], if no relaxation is employed. The relaxation
factor β is computed from Aitken’s ∆2 method [89], and is equal to one in the
first iteration step.

Algorithm 5.3 Iterative scheme
Require: Fluid velocity field un and solid state Sn at time tn

1: Initialization: set S̃n+1 = Sn

2: while not converged do

3: Construct mask function χ̃n+1 and solid velocity field ũn+1
s from solid

state S̃n+1 (see Algorithm 5.1)
4: Compute source terms for the fluid f n = f (un, χ̃n+1, ũn+1

s )

5: Advance fluid to new time level un → ũn+1 using the AB2 scheme
6: Compute static pressure p̃n+1 = p(ũn+1, χ̃n+1, ũn+1

s )

7: Interpolate pressure jump [̃p]
±
j (t

n+1) = I( p̃n+1) ⊲ j is iteration index
8: Relaxation:

9:
˜̃
[p]
±
j = (β)[̃p]

±
j + (1− β)

˜̃
[p]
±
j−1

10: Advance solid state Sn → S̃n+1 using ˜̃[p]
±
j and the BDF2 scheme

11: Convergence test
12: end while
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5.3 Validation tests of the fluid-structure interac-

tion module

5.3.1 Energy budget

A first physically relevant test is whether our coupled solver artificially injects
energy into the system. For computational simplicity, we consider a two–
dimensional setup, consisting of a thin beam immersed in viscous fluid, and
use the semi-implicit scheme. At startup, the beam is held fixed, and an impul-
sively started mean flow u∞ is imposed. After the decay of the startup singu-
larity, at t = 2, the beam is released and starts to perform damped oscillations.
The two-dimensional domain is Ω = [0, 4]× [0, 4], where linear dimensions
are normalized by the beam length. The resolution is Nx×Ny = 2048× 2048,
the penalty parameter is Cη = 10−4 and we consider two Reynolds numbers,
Re = u∞ℓ/ν = 200 and 1900, which gives K = 0.36 and 0.12, respectively.
The beams energy can be computed as the sum of the flexural, kinetic and
potential energy:

Es
solid = Es

flex + Es
kin + Es

pot (5.3.1)

where

Es
flex =

1
2

ˆ 1

0
η

(
∂Θ

∂s

)2

ds (5.3.2)

Es
kin =

1
2

µ

ˆ 1

0
us · us ds (5.3.3)

Es
pot = µg

ˆ 1

0
y ds. (5.3.4)

The elastic material is defined by µ = 0.57 and η = 0.065. The energy budget
for the penalized Navier–Stokes equation can be obtained by dot-multiplying
eqn. (2.1.2a) by u and integrating over the computational domain Ω = T

2:

d
dt

E
f
kin = −ν

ˆ

Ω

|∇u|2 dΩ− 1
Cη

ˆ

Ω

χ (u− us) · udΩ

Ė
f
kin = −ν

ˆ

Ω

ω2dΩ− 1
Cη

ˆ

Ω

χus · (u− u∞ − us)dΩ

− 1
Cη

ˆ

Ω

χu∞ · (u− us)dΩ− 1
Cη

ˆ

Ω

χ (u− u∞ − us)
2 dΩ

Ė
f
kin = Ė

f
diss + Ė

f
solid + Ė

f
mean + Ė

f
porous (5.3.5)
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where the penalization term has been split into three contributions: the en-
ergy that enters the fluid through the solid motion Ė

f
solid and the mean flow

Ė
f
mean, and the energy that is dissipated in the penalization term Ė

f
porous,

which can be interpreted as “porous dissipation”.

For our numerical method, we require Ė
f
solid = Ės

solid, i.e., the coupling should
not introduce artificial energy. Figure 5.3.1 illustrates a snapshot of the vor-
ticity field (left) and the time series of the different terms in equation (5.3.5).
One can observe good agreement between Ė

f
solid and Ės

solid, the relative L2
difference is about 7%. The remaining difference is attributed to finite-size
effects in the model, since the underlying solid model is one-dimensional, but
it is extended to a thin, yet two-dimensional structure.

5.3.2 Two-dimensional validation: Comparison with Turek
et al.

To validate our numerical method quantitatively, we consider the benchmark
proposed by Turek et al. [165, 166]. It consists of three stages, one of which
has already been used to evaluate the model error of the beam equation. The
remaining stages are the CFD test, in which a rigid obstacle is considered,
and the FSI test with a flexible object. For each stage, three test cases are
proposed, and here we consider only the CFD3 and FSI3 tests.

The setup is illustrated in figure 5.3.2 top. A circular cylinder of radius
R = 0.05 with an appendage of length ℓ = 0.35 and thickness h = 0.02 is
immersed in a channel of size Lx × Ly = 2.5× 0.41 with a parabolic velocity
profile imposed at the inflow. The center of the cylinder is placed at (0.2, 0.2),
which intentionally yields an asymmetric setup. In our approach, the channel
walls as well as the obstacle are modeled with the penalization method. The
walls have the same thickness as the beam structure. The inflow condition is
imposed directly using the volume penalization method.

We should note that in this setup, the distance between the object and the
inflow is smaller than the upstream influence of the object itself. Thus, this
configuration cannot be reproduced considering a long channel with a devel-
oped laminar flow, as it would be done experimentally.

First we consider the CFD3 test, where the obstacle is rigid. The Reynolds
number is Re = u∞ℓ/ν = 700. The test is designed such that the flow reaches
a periodic state, which is independent of the initial condition. As the channel
walls are modeled with the penalization method, they cover a finite area,
which has to be taken into account when forcing the mean velocity. To force
unity mean flow in the channel, u∞ is corrected using the channel walls height
hchan, thus u∞ = 1− 2hchan/Ly.
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Figure 5.3.1 – Energy test case for the Reynolds numbers 200 (top) and 1900 (bot-
tom). Left column: Snapshot of the flow field, shown is vorticity with superimposed
white streamlines. Right column: energy budget according to eqn. (5.3.5). The beam
remains fixed until t = 2. The startup singularity is due to the impusively started

flow. The curves for Ė
f
solid and Ės

solid show good agreement in both cases, indicating
a good conservation of energy.
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Figure 5.3.2 – Results for the CFD3 test with rigid appendage. Vorticity field with
stream lines and the obstacle (top). Bottom: time series of the lift (left) and drag
force (right) on the obstacle. Present results are represented by blue solid lines and
the reference solution [165] by the dashed black line.

When starting with a uniform flow as initial condition, the developing wake
behind the obstacle requires a considerable amount of time to destabilize
and to reach the final periodic state. For this reason, all present simulations
are started with the flow field at the end of the destabilization phase. The
quantities for comparison are the lift and drag force in the developed periodic
regime and the fundamental frequency of the lift force, which corresponds
to the lowest significant frequency present in the spectrum. The forces are
represented by their minimum and maximum values during one period. Due
to transient effects, the min/max values are averaged over the last periods,
and simulations are run long enough for the width of the 95% confidence
interval to be smaller than 0.1% of the predicted value. This results in a
computational time of about 30 period times.

In table 5.2, the present results for four levels of resolution are compared
with the reference solution presented in [165]. The general accuracy of our
method is satisfying, even though the maximum value of the lift force presents
some noticeable difference with respect to the reference solution. In addition
to the max/min values, the shape of the lift/drag curves are compared in
figure 5.3.2, bottom. It can be observed that the curves are very similar.
The drag curve exhibits an offset which is related to the smoothing layer in
the χ-function, which can be interpreted as surface roughness. Due to the
smoothing layer, our method generally overpredicts the drag force. On the
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Lift

Resolution Cη (K = 0.43) Max Min

1300× 288 4 · 10−3 423.66 -0.53% -500.44 11.28%

2600× 576 1 · 10−3 392.47 -7.85% -464.57 3.31%

5200× 1152 2.5 · 10−4 402.00 -5.62% -452.64 0.65%

10400× 2304 6.3 · 10−5 405.46 -4.80% -446.48 -0.72%

Reference 425.92 -449.70

Drag

Resolution Max Min Frequency

1300× 288 512.62 15.18% 498.44 14.89% 4.46 1.47%

2600× 576 475.70 6.88% 463.80 6.91% 4.41 0.33%

5200× 1152 453.42 1.88% 442.14 1.92% 4.37 -0.58%

10400× 2304 447.29 0.50% 436.15 0.53% 4.36 -0.81%

Reference 445.07 433.83 4.40

Table 5.2 – Results of the CFD3 test with a fixed obstacle.

other hand, the offset is only 0.5% of the mean value and thus rather small.
The corresponding vorticity field during the periodic state is shown in figure
5.3.2, top.

To conclude the quantitative validation we proceed to the FSI3 test case. Now,
the appendage attached to the cylinder is flexible. As for the CFD3 test, some
computational time can be saved by choosing a suitable initial condition. We
use the same flow field as in the CFD3 test case, and the beam is initially
at rest and undeformed. The non-dimensional parameters characterizing the
solid are µ = 5.7143 · 10−2 and η = 2.5915 · 10−2, and the Reynolds number
is Re = u∞ℓ/ν = 700.

As for the CFD3 test, the quantitative comparison with results from the lit-
erature is done using the max/min values of the respective time series. The
fundamental frequency f0 is that of the y-displacement dy of the trailing edge.
In the present work, the max/min value are obtained as stated previously for
the CFD3 test, but interestingly the FSI3 test requires a shorter computational
time to settle into its final periodic state. Here, about 25 oscillations were
computed. The max/min values for the displacement dy, the drag and lift
force and the frequency f0 for this test are presented in table 5.3. The dif-
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Figure 5.3.3 – Results for the FSI3 test with a flexible appendage. Top: snap-
shot of the vorticity field with the deformed obstacle. Bottom: time series of the
y-displacement of the trailing edge and of the drag force acting on the entire obstacle.

ferent methods behind the numerical results are described in the respective
papers and in the overview article [165].

For the y-displacement of the trailing edge, all methods except (5) and (7)
agree to within 3.9%, and the present results fit well into this range of re-
sults. Unless otherwise stated, differences in this section are normalized with
the averaged result. It is remarkable that the result for dy does not signifi-
cantly depend on the resolution level, as even the coarsest resolution yields
an acceptable value. Compared to the initial computation from [165], present
results differ by 0.6%.

For the drag force, the different methods are spread to a range over 7.5%
of the averaged value. The drag computed with the present method is in
excellent agreement for the two highest resolutions and again quite close to
the original values from [165], with a difference of about 0.5%. The shapes
of the time series of the displacement and the drag force are illustrated in
figure 5.3.3 together with the original results presented in [165].

Concerning the lift force, the range of results is broader and varies up to 40%
for method (7), 30% for method (5) and 7.5% for method (8). The present
method seems to overpredict the amplitude of oscillations in the lift force, and
the difference in both max and min value is about 20% that of the average.

In conclusion we find good quantitative agreement with the results found in
the literature, for the solid and fluid solver alone, as well as for the coupled
FSI algorithm.
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dy

[
×10−3

]
Fdrag Flift f0

Resolution max min max min max min

1300× 288 36.47 -32.12 591.45 525.75 184.83 -189.29 5.89

2600× 576 36.32 -32.98 516.73 455.39 187.83 -185.73 5.56

5200× 1152 35.58 -32.59 487.87 437.93 190.50 -184.36 5.47

10400× 2304 35.63 -32.71 481.20 432.50 188.52 -181.30 5.44

(1) Turek [165] 36.37 -33.45 487.81 432.79 156.13 -151.31 5.47

(2) Schäfer [156, 166] 36.73 -33.79 487.82 431.98 159.54 -155.86 5.82

(3) Rannacher [166] 35.89 -33.33 478.59 426.21 155.06 -150.34 5.42

(4) Turek [166] 36.46 -33.52 488.24 432.76 156.40 -151.40 5.47

(5) Breuer [166] 44.00 -41.00 507.00 428.00 204.90 -172.50 5.06

(6) Krafzyk [166] 36.58 -33.62 494.30 431.70 155.81 -152.19 5.50

(7) Wall [89, 166] 30.45 -27.55 451.50 416.50 91.13 -86.07 5.30

(8) Bletzinger [166] 38.18 -35.08 503.02 446.78 169.76 -162.04 5.50

Average 36.75 -33.81 488.14 431.62 158.62 -150.78 5.46

Table 5.3 – Results of the FSI3 test. Present computations using four levels of res-
olution on the top, compared to various results from the literature. For orientation
the average over the different publications, excluding the present one, is shown.

5.3.3 Three-dimensional validation: Thrust generated by a
heaving plate

As validation case for fluid–structure interaction in a three–dimensional set-
ting we consider the numerical work by Yeh and Alexeev [186]. They consider
a flexible panel with an imposed heaving motion at the leading edge with zero
angle of attack (i.e., no pitching of the leading edge imposed). Owing to flex-
ibility, the effective angle of attack is non-zero, and the foil produces a thrust
force. Much like the three-dimensional FSI models in the present work, this
work is intended to model swimming propulsion. The authors study the in-
fluence of the driving frequency, normalized by the eigenfrequency in fluid,
φ = f / f1, f by varying the elastic properties of the flexible plate. Two regimes
are identified, which maximize either the velocity for φ ≈ 1.1 or the efficiency
for φ ≈ 1.7.

The reference solution is computed using the Lattice Boltzmann Method,
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which approximates incompressible fluid flow without solving an elliptical
Poisson equation. An overset approach with a refined region in the vicinity
of the plate and a coarser one in the far field are used. The flexible plate is
modeled using the lattice-spring model, i.e., it is approximated as a system of
mass points connected by springs.

Here, we consider only a single simulation out of the dataset presented in
[186], arbitrarily fixing the added mass parameter (as defined in [186]) to
T = 1 and the frequency ratio to φ = 1.1. The former choice of a heavier
swimmer is motivated by numerical stability, and thus all results are obtained
using the semi-implicit FSI coupling scheme without iterations. With the stiff-
ness parameters kindly provided1, the non-dimensional solid properties in our
model are

µ = 0.4031 η = 1.6669.

Our normalization is based on the beam length ℓ, the driving frequency f and
the fluid density ̺ f . The plate’s width is w = 0.4, and the prescribed heaving
motion is given as

y = a0 cos (2π f t) ,

where a0 = 0.1. The Reynolds number Re = 2π f ℓa0/ν is equal to 250. The
domain size is 4× 4× 2 and it is discretized using 768× 768× 384 points, with
the penalization parameter equal to Cη = 2 · 10−4 (K = 0.14). We apply a
vorticity sponge to remove the periodicity. The validation has to be performed
in the steady cruising state, where the thrust generated by the plate is com-
pensated by acceleratethe drag force. In our case, the plate remains anchored
to the laboratory frame and accelerates the axial mean fluid flow u∞ instead.
To speed up the computation, we modify the mean flow equation according
to eqn. (2.6.3), and set mfluid = 0.5. In coarser resolution pre-computations,
the mean flow was started from rest and the terminal value, 1.3, was set as
initial condition u∞ (t = 0) in the high-resolution case, to further reduce the
computational cost. In the high-resolution case, 11 cycles were performed.

Table (5.4) compares the results obtained during the last cycle with those
given in [186]. The cruising speed is slightly reduced in the present work,
but the agreement to within 5% is still tolerable. The aerodynamic power,
computed as Paero =

´

us (u− us) /Cη (cf. section 3.2.5), is overpredicted by
about 25%. Both, overprediction of power requirement and undeprediction
of cruising speed are related to an elevated drag coefficient owing to the
smoothing layer in the χ-function. The trailing edge displacement d is very
close to the reference solution (1%).

The flow field is visualized in figure 5.3.4. At each half-stroke, a vortex is
shed, which travels perpendicular to the mean flow on a V-shaped path. The
flow field is qualitatively similar to the reference computation.

1Private communication
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u∞ Paero ηeff = u∞/Paero d

Yeh & Alexeev [186] 1.47 5.11 0.29 7.60

Present 1.40 6.53 0.22 7.68

Table 5.4 – Cycle-averaged results for the heaving plate.

In conclusion, the comparison yields reasonable agreement with the litera-
ture, and the remaining difference can be attributed to differences in model-
ing. The present plate is rigid in the lateral direction, while the reference data
is obtained with a 2D flexible plate. This simplification has also an influence
on the solid model parameters η and µ. The former is the non-dimensional
rigidity, corrected by the Poisson ratio of the solid material [90]. Owing to this
correction, the eigenfrequency in vacuum of the beam, f0 = 3.516/2π

√
η/µ

is slightly different (6%) from the corresponding eigenfrequency of the 2D
flexible plate. However, the differences between both studies are reasonable
and we thus conclude that our fluid–structure interaction module is validated
also in the 3D case.
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Figure 5.3.4 – Flow generated by the heaving plate, visualized by isosurfaces of
vorticity magnitude. Blue semitransparent corresponds to ‖ω‖ = 5, purple to
‖ω‖ = 20. The Reynolds number is 250.



Chapter 6

Two-dimensional
fluid-structure interaction

The content of this chapter is adopted from [44], [46] and [83].

This chapter is dedicated to fluid–structure interaction problems in a two–
dimensional setting, which is a necessary step before passing to three–dimensional
problems. We apply our method first to a canonical setup, where a beam is
immersed in a fluid. No external driving force is applied. This problem is
astonishingly rich in phenomena, as the system displays physical instabilities
and transition to chaos, depending on the physical parameters. Flapping fly-
ers have to avoid this regime. In the second section, we add an externally
imposed heaving motion to the leading edge, and study the thrust production
by this wing section. A short outlook on two wing sections heaving in tandem,
like the wings of a dragonfly, is given.

6.1 Fluttering instability of flexible foils

The content of this section is adapted from [44].

In nature inspired fluid dynamics, the complex interaction of some deformable
structures with an ambient flow is a commonplace problem. Whether it is
gliding, swimming or flying, many types of animal locomotion strongly rely
on this type of interaction [21]. The archetype problem of fluid-structure in-
teraction is the flapping of a flag in the wind, attracting researchers due to
its richness in phenomena. Indeed, a flag exhibits a large variety of possible
regimes, depending on its material parameters and the surrounding flow. It
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can be aligned with the flow in a stable state, or flap dynamically. The latter
state can further be subdivided into highly regular and chaotic motion pat-
terns. In some parameter ranges, also bistable behavior has been reported,
where the dynamically selected state depends on the initial conditions.

Natural swimmers and flapping flyers exploit a combination of active and
passive flapping to improve their flight performance [3, 41, 134], a source
of inspiration for various investigations. Also, aside from locomotion, the
fluttering instability occurs in other biological applications. Huang [71] first
pointed out that flutter is encountered in the upper human airways, where
the soft palate separates nasal and oral inflow. The instability manifests itself
in the occurrence of snoring or, in severe cases, obstructive sleep apnoea/hy-
popnea.

We now apply the method described above to study the flutter problem. The
domain size is L× H = 10× 4 chord lengths, the vorticity sponge technique
is applied at all four boundaries of the domain and thus prevents the wake
from re-entering the domain. The spatial resolution is 2000 × 800 Fourier
modes for Re ≤ 200, 2500× 1000 for Re = 500, 2800× 1120 for Re = 750
and finally 3200× 1280 for Re = 1000. The penalization parameter is fixed
to Cη = 10−4 and the smoothing is equal to two grid points, i.e., Csmth = 2,
in all simulations. The beam thickness is 4 · 10−2, corresponding to eight grid
points on the coarsest and 13 on the finest grid. To complete the picture
and to check its validity, some runs with double resolution have also been
performed, yielding a difference of less than 3% for the averaged end point
deflection angle amplitude and about 8% for the lift force amplitude, with
respect to the coarser simulations.

For the flutter phenomenon it is conventional to introduce a reduced free-
stream velocity u⋆ =

√
µ/η = u∞ℓ

√
̺s/EI, as proposed in [42, 107, 150,

160]. There is no mathematical reason for this choice, but it is physically more
intuitive to increase the flow velocity than decreasing the bending stiffness
and hence change the material the beam is made of.

The setup is symmetric with respect to the beam, therefore the instability has
to be triggered somehow. This is done by applying an external force, fext in
equation 5.1.10, on the structure during a small time interval. At the end of
this perturbation, the beam has moved downwards by about 2 · 10−3 units and
reaches a velocity of 2 · 10−2. Note that applying an external force is possibly
the easiest way to break the symmetry, as this is always compatible with the
boundary conditions (5.1.10).

In this study we keep the mass ratio fixed at µ = 1/3 and vary the Reynolds
number and the reduced free-stream velocity. Figure 6.1.1 summarizes the
parameters for which the different simulations have been performed, where
the symbols indicate configurations found to be stable (�) or in a periodic
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(©) or chaotic (⋆) fluttering state.

We compare our results with two different computational approaches. The
first one is the inviscid vortex shedding model presented by Michelin et al.
[109]. This study uses the same model equation for the beam as we do and
a simplified model for the fluid. Their results concerning the stability limit
are in agreement with the existing experimental and linear stability results
presented in [42]. For the mass ratio considered here, stability is lost above
u⋆

crit = 9.6, according to their stability analysis. This stability limit is repre-
sented by the dash-dotted line in figure 6.1.1.

The second study we compare our results with the work of Connell and Yue
[25], where a linear stability analysis for viscous flows and direct numerical
simulations have been presented. The solid is also modelled using a non-
linear beam equation. The computational approach for these simulations re-
lies on body-fitted, time-dependent grids with a resolution of 100× 200 points.
Spatial discretization is performed using second order finite differences. The
linear stability analysis assumes a Blasius boundary layer on the beam to de-
termine its internal tension, therefore the stabilizing force depends on the
Reynolds number. Recasting the stability limit found by this analysis in our
terminology, the beam becomes unstable at

u⋆
crit = 2π

√
µ

µ
µπ+1 − 1.3 Re−1/2

, (6.1.1)

represented by the solid line in figure 6.1.1. The numerical simulations per-
formed in [25] focus mainly on the limit of vanishing bending stiffness, with
the mass ratio being the parameter of interest, and are found to be in reason-
able agreement with the analytical results.

6.1.1 Variation of the Reynolds number

In the first series of simulations, we focus on the influence of the Reynolds
number for fixed values of µ and u⋆. In order to directly compare our results
with the ones reported in [109], we fix µ = 1/3 and further choose u⋆ = 14.
In the inviscid limit, this point was found to be in the chaotic regime. The
considered Reynolds numbers are 25, 50, 100, 200, 500, 750 and 1000.

Figure 6.1.2 illustrates the computations for Re = 25, 100, 200 and 1000. The
trajectory of the end point in the displacement-velocity plane illustrates the
temporal behavior, and the vorticity field ω at a given time is visualized in the
vicinity of the beam. Note that the figure is a zoom and the computational
domain is about two times larger in both directions. The Re = 750 case is
analyzed in detail in figure 6.1.3.
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Figure 6.1.1 – Stability map in the Re-u⋆ plane for µ = 1/3. Inviscid [109] (−·)
and viscous linear stability analysis [25] (−). Symbols indicate present simulations,
found to be stable (�) or in an either periodic (©) or chaotic (⋆) fluttering state.
Insets show corresponding snapshots of the absolute vorticity |ω| at Re = 750.

Re fdisp [u∞/ℓ] adisp [ℓ] fdrag [u∞/ℓ] flift [u∞/ℓ]

100 0.4327 0.2020 0.8380 0.4138

200 0.5886 0.3368 1.1955 0.5886

500 0.6254 0.3186 1.2275 0.6254

750 0.6251 0.3142 1.2203 0.6251

1000 0.6161 0.3172 1.2321 0.6161

Table 6.1 – Amplitude and frequency of y−displacement and frequencies of drag and
lift forces as a function of the Reynolds number. The weight ratio is µ = 1/3 and the
reduced inflow velocity is u⋆ = 14.
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Let us first discuss the lowest Reynolds numbers, illustrated exemplarily for
Re = 25 in the top row of figure 6.1.2. In the phase diagram, the initial per-
turbation is marked by the red part of the trajectory. The oscillation amplitude
grows during the first half turn in phase space, and then continuously spirals
down to the initial state of rest.

Configurations marked as stable in figure 6.1.1 were stopped if the beam’s in-
ternal energy, consisting of the elastic and kinetic contribution, stayed below
the initial perturbation energy for sufficiently long time. We used Tstop = 15,
which is larger than ten flapping cycles in a periodic case. In the vorticity
snapshot, whose corresponding position in phase space is marked with a red
star, a thick, attached boundary layer can be observed. The corresponding
figures for Re = 50 do not differ significantly, only the damping of the initial
perturbation has become weaker and hence the typical spiral-like motion of
the end point in phase space slower approaches its origin.

Increasing Re to 100, the behavior of the beam changes from stable to un-
stable. The phase diagram shows the growth in amplitude of the flutter os-
cillations, but also that this growth rate is very slow. Thus, we can conclude
that the critical Reynolds number must be between 50 and 100, and that the
distance to the upper limit of this range is smaller than the lower one. On
the other hand, according to the viscous linear stability analysis, equation
(6.1.1), the stability limit is predicted at Recrit ≈ 183. Hence we can con-
firm that the linear analysis tends to overpredict the stability threshold for
low Reynolds numbers, a result that has been stated in [25] for a different
parameter range.

When further increasing Re to 200, the growth rate of the oscillation becomes
significantly higher, as can be seen in the phase diagram in figure 6.1.2 (third
row from top). The vorticity field shows distinct, separated vortices, shed
each time the beam tip reaches its maximum amplitude. Note that the flow
field for Re = 100 is illustrated during the amplification phase. Comparing
Re = 100 and 200, the flow field reveals different wake structures in the
amplification phase and in the final periodic state: during the growth phase,
no distinct vortices are shed at the trailing edge of the foil, the wake is formed
of two coherent zones of positive and negative vorticity. Furthermore, the
final periodic state differs in both cases, while this is not true when comparing
higher Reynolds numbers among themselves. The case Re = 100 is therefore
different from the others.

For Re = 500, the periodic state is reached sooner and the shed vortices be-
come stronger and narrower, forming the characteristic von Kármán street, a
trend that is preserved at Re = 750 and 1000. Figure 6.1.3 illustrates the vor-
tex shedding mechanism observed at Re = 750. In snapshots A–B, the layer
of negative vorticity on the top of the beam is sheared of the surface and elon-
gated. The same holds for the layer of positive vorticity at the bottom side.
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Figure 6.1.2 – The influence of the Reynolds number. Phase-diagram of the trailing
edge in the displacement-velocity plane

(
y, uy

)
(left column) and a vorticity snap-

shot (right column) with superimposed white streamlines. Only part of the compu-
tational domain is shown. The Reynolds number is Re = 25, 100, 200, 1000 (from
top to bottom). The point in phase space belonging to the snapshot is marked with a
red star.

Between C and D, a single vortex begins to separate, still connected to the
remainder of the vorticity layer on the top side. The vortex is advected, and
the reverse process starts (F–G). For the instant G, the whole vorticity field is
shown, illustrating how the vortices eventually separate and form the street of
isolated vortices. The process is also illustrated in the phase diagram in figure
6.1.3 (bottom left). The phase trajectories are colored by the absolute accel-
eration of the beam. Note that the acceleration varies smoothly. The shape
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Figure 6.1.3 – Periodic state: Re=750 and u⋆ = 14. Left side: (A–G) time history of
a typical oscillation period with a snapshot every ∆t = 0.1. Top: the whole vorticity
field at T = 84.5 Bottom, middle: Phase diagram of the end point, colored with the
absolute acceleration. Bottom, right: time history of the deflection line for one period
of motion, with ∆t = 0.05, color ranging from dark to light blue.

of the beam, illustrated in figure 6.1.3 (bottom, right), is in good agreement
with [109].

Even though there are some changes in the shape of the phase trajectory, the
flapping amplitude remains constant above Re = 200. The same holds for
the fundamental flapping frequency, that is the frequency of the trailing edge
oscillations, as summarized in table 6.1. The frequencies are computed using
the fast Fourier transform, and the amplitude of the displacement, adisp, is the
averaged value of all periods after the amplification phase. This averaging is
done as the beam does not reach a perfect periodic state during the compu-
tation. That can also be seen from the phase diagrams, where the trajectories
are more spread out.

Hence we can conclude that we do not observe a transition to a chaotic state
for this choice of parameters, contrary to the result from the inviscid model
[109]. This may also be an effect due to the finite simulation time, although
the computation spans at least 20 oscillation periods.
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Figure 6.1.4 – Left: Strouhal number St = 2 A f
u∞

of the displacement, for simulations

resulting in periodic behavior. Re = 200 (©), Re = 500 (�), Re = 750 (▽),
Re = 1000 (⋆) and values presented by Michelin et al. (∗) [109]. The dashed line
corresponds to the average Strouhal number. Right: spectra of the integral lift force
for Re = 750 in a periodic (u⋆ = 14, light red) and chaotic (u⋆ = 30, blue) state.

6.1.2 Influence of the stiffness and the transition to chaos

The first part of our parameter study dealt with the influence of the Reynolds
number, now the influence of the stiffness is considered by varying the re-
duced inflow velocity. As illustrated in the stability diagram, figure 6.1.1, we
focus on two different Reynolds numbers, 200 and 750, and increase the re-
duced inflow velocity from a stable state until we reach the region of chaotic
flapping. A third series at Re = 500 completes the picture.

Considering Re = 200, the onset of flapping can be observed for 12 < u⋆
crit <

13, while equation (6.1.1) predicts that to happen at 13.62. This slight differ-
ence between our results and the analytical model persists at Re = 500, where
we find 10 < u⋆

crit < 11 versus 11.21 from the theory. When Re is increased
further, our interval matches the analytical prediction. As stated previously, a
simulation is considered as stable if the internal energy of the beam remains
smaller than its initial perturbation energy for sufficiently long time, despite
some small oscillations that are not yet completely damped.

For the stability limit we can hence conclude that our results are in reasonable
agreement with the viscous linear stability analysis, the difference becoming
smaller with increasing Reynolds number. Note also that the prediction from
the inviscid stability analysis [109] is consistent with the viscous theory for
sufficiently high Re.

The present results for the transition from a regular to an irregular flapping
state cannot be compared with the results reported in [25], since therein
the limit of small bending stiffness is considered. In this limit, the transition
periodicity–chaos is found to be well approximated by µchaos = β µcrit with
β = 2.5. In the case considered here, where the bending stiffness is not small,
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such a proportionality cannot be observed.

When the flapping state is periodic, a single vortex is shed at each up- and
downstroke, as discussed in section 6.1.1 and illustrated in figure 6.1.3. How-
ever, in the chaotic regime, the deformation at the trailing edge becomes
larger (due to the increasing reduced inflow velocity), and now a pair of vor-
tices of different sign is shed into the wake, see figure 6.1.5, labeled by X and
Y. These dipoles propagate with an additional, self induced velocity, relative
to the mean flow and thus form an irregular wake pattern. They can also
travel in the cross-flow direction, as the dipole Y does. At most of the strokes,
two vortices of approximately equal strength are shed (like the pair X).

However, the chaotic regime is also characterized by violent intermittent ac-
celerations of the trailing edge, which are larger than the mean accelerations
by an order of magnitude. In the phase diagram in figure 6.1.5, these violent
snapping events are represented by strong peaks in the acceleration (indi-
cated by the color). The mean absolute acceleration is found to be 5.7 and
during snapping events peak values between 50 and 100 can be observed.

A single snapping event is illustrated in figure 6.1.5, left. The time instants A–
G are equally spaced in time, with ∆t = 0.05. The first three snapshots, A–C,
show only minor evolution, illustrating the fact that the acceleration is small
compared to the peak value between C and D, where the actual snapping
takes place. Subsequently, a strong positive vortex is shed into the wake (E–
G), followed by a less intense negative one (G).

This asymmetry in intensity of the shed dipole is also characteristic for the
snapping event and distinguishes it from regular oscillations, where the dipole
is approximately symmetric, compare dipole Z with X and Y in figure 6.1.5.

To further illustrate the chaotic nature of this regime, figure 6.1.5 contains
also the time history of the beam deflection line. A distinct deflection line (Q)
highlights another difference to the periodic state. The trailing edge of this
deflection line is orientated against the flow direction, an event which does
not occur in periodic simulations.

The differentiation between periodic and chaotic states, illustrated in figure
6.1.1, needs some further discussion. Several observations change during the
transition. First, the relation between the frequencies of the displacement,
and the lift and drag force differ in both flapping states. While we have fdisp =
flift and fdrag = 2 fdisp in a periodic state (cf. table 6.1), these relations do
no longer hold when the flapping is irregular. Moreover, we can no longer
identify a dominant frequency in the spectra of the displacement and the
hydrodynamic forces, as illustrated exemplarily by plotting the spectrum in
figure 6.1.4 (right). This finding is consistent with the results reported in
[25, 109].

We observe from our data that chaos does not necessarily need to occur di-
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Figure 6.1.5 – Chaotic state: Re=750 and u⋆ = 30. Left side: (A–G) time history
of a snapping event with a snapshot every ∆t = 0.05. Top: the whole vorticity field
at T = 11.70, exhibiting the typical vortex pairs of different sign (X and Y), and
the strongly asymmetric vortex pair resulting from the snapping event (Z). Bottom,
middle: Phase diagram of the end point, colored with absolute acceleration. Bottom,
right: time history of the deflection line with ∆t = 0.05, color ranging from dark to
light blue.

rectly after the breaking of symmetry. Effectively, the initial perturbation may
be followed by a phase of regular flapping, before this regularity breaks down
and the beam performs chaotic oscillations. Therefore it is difficult to judge
whether a configuration is chaotic or periodic. The last simulations marked as
periodic in figure 6.1.1 did not show a transition for a long time (Tstop ≥ 80
corresponding to ≈ 50 periods), yet still it cannot be completely excluded that
the periodicity will not break down. Note that in both [109] and [25] such
a transitional behavior is not reported. However, [25] considers the limit of
vanishing bending stiffness, and may therefore not be compared directly with
the present results, and the method used in [109] relies on an inviscid ap-
proach. It can be conjectured that the finite Reynolds number inhibits the
chaotic state for a certain time, and that this delay decreases with increasing
Re.

To further investigate this transition, we apply the continuous wavelet trans-
form (CWT) to the time evolution of the drag force. The CWT transforms the
signal into the time-frequency domain [49]. We use the complex-valued Mor-
let wavelet with the wavenumber kψ denoting the barycenter of the wavelet
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Figure 6.1.6 – Wavelet analyses of the drag force for case u⋆ = 20 (left) and u⋆ = 22
(right). The modulus of the complex valued Morlet wavelet coefficients are plotted
as a function of position and scale. The original signal is plotted on the top.

support in Fourier space. Here we use kψ = 5.

Figure 6.1.6 shows the modulus of the wavelet-coefficients as a function of
time and scaling factor (which is related to frequency), and the time history
of the underlying drag signal on top, for Re = 750 and u⋆ = 20 and 22. The
former case is the last value of u⋆ found to be in a periodic state and the
latter is the first chaotic one. The modulus of the wavelet-coefficients yields
an energy distribution in the scale-time domain.

For the u⋆ = 20 case, one distinct dominant frequency can be found, corre-
sponding to a horizontal band in wavelet-space. This frequency does not alter
significantly, albeit some deviations from a purely periodic state can be ob-
served. Note that the values for the lowest frequencies close to the beginning
and the end of the signal are due to boundary effects.

Considering the u⋆ = 22 case, a different behavior can be observed. The drag
force exhibits a periodic behavior until T ≈ 22, similar to the u⋆ = 20 case.
After this time, a broad band of frequencies can be observed, characteristic
for a chaotic state.

In periodic states, neither the flapping amplitude nor the frequency undergo
a significant change when u⋆ is increased, hence the Strouhal number St =
2 A f /u∞ remains practically constant, as illustrated in figure 6.1.4. The stan-
dard deviation from the mean value, represented by the dash-dotted line, is
4.5% and there is no distinct trend visible. The comparison with the val-
ues reported in [109] yields reasonable agreement. In particular, the con-
stant flapping frequency matches well the experimental results reported by
Shelly et al. [150], where a linear dependency on the inflow velocity has
been found. Therefore the frequency is a constant when normalized with u∞.
The Strouhal number is constant, and does in particular not approach a “nat-
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ural frequency of the fluid dynamics defined by a universal Strouhal number”
[25] of St ≈ 0.2. This result seems to somewhat contradict those of Con-
nell and Yue [25]. They explained the transition to chaos with a resonance
phenomenon when the flapping frequency matches this universal Strouhal
number. A possible explanation may be that [25] considered the limit of van-
ishing bending stiffness, while here we deal with a finite one. We conjecture
that the transition mechanism is different when the bending stiffness becomes
larger.
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6.2 Thrust generation by flexible heaving foils

The content of this section is adapted from [46] and [83].

6.2.1 Introduction

In forward flight, flapping wings generate the desired thrust by performing
up- and downstrokes combined with the supination and pronation move-
ments that set the angle of attack. A canonical two–dimensional approxima-
tion of this process is the heaving and pitching motion of a foil, as illustrated
in figure 6.2.1. If the wing is assumed to be rigid, the time evolution of the
positional angle φ and the feathering angle α must be imposed, as described
in chapter 3, cf. Fig. 6.2.1(a). In the two- dimensional approximation, shown
in Fig. 6.2.1(b), this is equivalent to prescribing a heave motion yle(t) and
a pitch motion α (t) (see, e.g., [164]). However, if the wing is flexible and
clamped at the leading edge, the effective angle of incidence varies passively
due to the action of inertial and aerodynamic forces (Fig. 6.2.1c), and this
mechanism also generates thrust with only the heave motion imposed (see,
e.g, [81, 134]). Note that there are several distinct effects associated with
the spanwise and the chordwise flexibility [81, 120, 121], and this section
focuses on the chordwise flexibility only.
The setup is inspired by the experimental work presented in [134], where a
“mechanical flapper” was presented. The device consists of two (virtually)
rigid bars with attached elastic foils. The rigid bars virtually eliminate span-
wise deformation, and thus the foil can be considered as flexible only in the
chordwise direction. The whole robot was mounted on a “merry-go-round”,
i.e., a long rod that could rotate freely and thus emulate forward flight. An
extension of this work was presented in [66], where four wings were consid-
ered, similar to the dragonfly in Fig. 6.2.1.

6.2.2 Single wing section

We now consider a single flexible foil immersed in a two-dimensional setup
as illustrated in Fig. 6.2.2A. Its mechanical constants are derived from [134],
where semi-circular wings of diameter D = 0.06 m and mid-span chord length
c = 0.03 m were considered. The wing model chosen here as reference has
a bending rigidity of EI = 1.83 · 10−4 Nm1, mass per unit area ̺s = 10.63 ·
10−2 kg/m2, thickness h = 0.078 mm and a relaxation frequency of f ⋆ =
34.2 Hz. This yields the following constants describing the solid model:

µ = 2.8902 η = 5.5284
1Note that EI is stiffness per unit depth
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Figure 6.2.1 – Schematic illustration of the chordwise section of a three–dimensional
wing (a), a two–dimensional approximation using a rigid heaving and pitching foil
(b) and a flexible foil clamped at its leading edge (c).

f / f0 1.29 1.19 1.08 1.00 0.97 0.92 0.86 0.80

N 25 25 25 25 25 25 25 25

f / f0 0.76 0.65 0.54 0.43 0.32

N 25 25 20 12 9

Table 6.2 – Physical parameters: the heaving frequency normalized by the first reso-
nant and the number of strokes computed in each simulation.

where the density of air is assumed to be ̺ f = 1.226 kg/m3. The correspond-
ing first linear eigenfrequency is f0 = 3.516/2π ·

√
η/µ = 0.77. The leading

edge is actuated using
yle = a0 sin (2π f t)

where a0 = 0.5 and the heaving frequency f will be the main parameter of
investigation. The Reynolds number, based on the free-stream velocity and
the length of the foil, Re = u∞ℓ/ν is set to 300, which is lower than the
experimental value of 2000, but higher than in the preliminary publication
[83]. Meanwhile, similarities between the present simulations and experi-
mental findings suggest that Reynolds number effects are not dominant in
this particular problem.

Initially, at time t = 0, the fluid velocity is equal to the imposed mean flow
u∞. Then, the heaving is set in motion, while a startup conditioner is applied
during the first stroke to avoid problems with the pressure singularity at t = 0
due to the impulsively started motion. The resulting trailing edge deflection
is depicted in Fig. 6.2.2B for the case f / f0 = 0.8. A slight phase shift between
the leading and trailing edge deflection can be observed, and the deflection of
the trailing edge is quite significant. Owing to the dynamic deformation, the
panel produces thrust and lift forces, illustrated in 6.2.2C-D. The averaged lift
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Figure 6.2.2 – Single wing section. The flexible foil follows a prescribed heaving mo-
tion (A) in a computational domain of size 10× 10, where the length of the foil is 1.
The outflow boundary is modeled with a vorticity sponge (Ωω

sp), and the remaining
structures are destroyed by the velocity sponge (Ωu

sp). The axial mean flow u∞ is
fixed to unity. (B) Prescribed heaving motion at the leading edge (blue) and result-
ing displacement of the trailing edge (red), in the case f / f0 = 0.8. Gray shaded
areas correspond to the first half of every full period T = 1.4. (C-D) Time series of
the lift force (C) and the thrust force (D). The flow field is visualized in (E) by the
vorticity, which is scalar-valued in the 2D case.
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force is zero, though the cycle averages over individual strokes may have non-
zero values. This latter can cause slow fluctuations of the center of gravity in
freely flying insects. The cycle-averaged axial force is negative, meaning that
indeed thrust and not drag is produced. A typical snapshot of the vortical
flow field is illustrated in Fig. 6.2.2E, showing the formation of typical vortex
pairs.
We now turn to studying the effects of the prescribed heaving frequency f ,
varying it between 0.32 f0 and 1.29 f0 using 13 intermediate values, see table
6.2. All other problem parameters remain constant. For higher frequencies,
the flow gets more erratic and we therefore raise the number of strokes, N, in
these cases from 9 to 25. All simulations are discretized using high resolution
(3072× 3072) with a penalization parameter of Cη = 6.25 · 10−5 (K = 0.14).
In [46] we also showed data obtained at coarser resolution, indicating valid-
ity of the results. Fig. 6.2.3 depicts the averaged values for thrust, efficiency
and trailing edge angle. The thrust force is simply the axial force, which
is averaged over N − 2 computed cycles, where the first two cycles are ex-
cluded because of the nonphysical initial condition. In agreement with the
experiments [134] and our preliminary data [83], the maximum thrust is ob-
tained at f / f0 = 0.86, which is below the resonant frequency in vacuum. At
the lower end of the parameter range, virtually no thrust is produced. The
value drops rapidly after the maximum and crosses zero thrust near the reso-
nant frequency. Even higher frequencies then produce drag instead of thrust.
Because of the erratic flow nature, thrust is given together with the 95% con-
fidence interval.
The efficiency is computed as the ratio of input power, i.e., the work per
time of the external forces [p]± and [τ]±, and the output power Fthrust · u∞.
Note the input power corresponds to the aerodynamic power defined in eqn.
(3.2.8). In figure 6.2.3B, a broad plateau with values around 0.1 is observed;
the maximum thrust generated at f / f0 = 0.86 also lies in this region of max-
imum efficiency. The rapid drop in thrust and efficiency in the vicinity of the
resonant frequency can possibly be explained by the trailing edge deflection
angle shown in Fig. 6.2.3C. It reaches values near 90◦ at the same frequency
where the thrust is maximized. Further increase in frequency result in larger
angles. This indicates that at the high-frequency end of the parameter range,
fluid momentum is directed forwards and thus decreases the thrust force.

6.2.3 Two wing sections

It is an appealing feature of the present method that it can be extended to
take several obstacles into account, a task that may present some extra dif-
ficulties when applying body-fitted grids to this problem. Here, we present
some preliminary results for two wing sections in interaction. Thus, we place
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a function of the heaving frequency normalized with the first linear resonant fre-
quency in vacuum. The thrust is given with its 95% confidence interval indicated
by triangles.

a second beam behind the first one, that follows the same imposed motion,
but with a phase shift δ, yle,2 = y0 + y f sin (2π f t + δ). We fix the heaving
frequency to f / f0 = 0.80, which is the last datapoint before the maximum
thrust in figure 6.2.3.

Inspired by the paper of Usherwood and Lehmann [168], we investigate the
influence of the phase shift on the wake structures for two values of δ, namely
δ = 0.75π and δ = 1.25π. As we are interested in the wake structure, the
computational domain is Lx × Ly = 30× 20 chord lengths, and the resolution
is 4608× 3072 nodes. The penalization parameter is Cη = 6.25 · 10−5. The
same sponge technique as for the single foils is applied, see figure 6.2.2.

In figure 6.2.4 (left column), the instantaneous vorticity fields for both cases
are shown. They reveal that the δ = 1.25π case (bottom) yields a top/bot-
tom asymmetry in the wake, as stronger dipoles are shed downwards while
only little vortices are shed on the upper part of the wake. The time averaged
vorticity field on the other hand reveals a more symmetric structure, indicat-
ing that the wake settles in either direction during the simulation. The time
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Figure 6.2.4 – Two heaving foils in tandem, instantaneous (left) and time-averaged
(right) vorticity fields. For visibility, only part of the computational domain is
shown. The phase shift is δ = 0.75π (top) and δ = 1.25π (bottom).

averaged vorticity in the δ = 0.75π case (top, right) also shows a symmetric
structure, but the vorticity is overall spread less widely.



Chapter 7

Three-dimensional
fluid-structure interaction:
Application to swimming

Preliminary results of this section have been published in [47].

Swimming organisms exploit bending waves to produce propulsive force, an
effect which has been extensively studied. Predicting the cruising velocity,
however, remains challenging, as the drag force has to be taken into account.
In this chapter, we numerically simulate simplified “swimmers”, which con-
sist of a chordwise flexible plate undergoing a driven pitching motion at the
leading edge, immersed in a viscous incompressible fluid. The solid is ac-
tively coupled with the fluid, i.e., we deal with a fluid–structure interaction
problem. The emphasis is placed on the longitudinal tip vortices, which result
from the finite span, and their contribution to the drag force.
The usage of flexible foils for thrust generation as a simplified model for
swimming organisms is common in both experimental and numerical con-
tributions. Dewey et al. [28] for instance studied the flexible pitching panels
experimentally. They find the efficiency, i.e., the ratio of thrust to power
coefficient, to be maximized if the Strouhal number is in the optimal range
0.25 < St < 0.35 and the pitching frequency is tuned to the structural res-
onant frequency of the foil. The former finding is supported by a variety of
contributions [41, 163, 164]. The connection between the driving frequency
f and the resonant frequency f0 is subject of a controversy in the commu-
nity. Kang et al. [81] state that operating at or near a structural resonant
will result in enhanced performance, and that this fact is widely accepted.
However, different studies found the precise relation f / f0 to vary apprecia-
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bly. In section 6.2, we already discussed the result from [134], which states
optimal performance around f / f0 = 0.7. Our 2D data points in the same
direction, although the difference to the resonant is smaller. Yeh and Alex-
eev [186] found two regimes which maximize cruising speed and efficiency
at f / f0 ≈ 1.1 and 1.6, respectively, as discussed briefly in section 5.3.3. How-
ever, they normalize by the resonant frequency in fluid, which can be derived
analytically [48]. Contrarily to these findings, Vanella et al. [171] provides
evidence for peak efficiency in flexible insect wings around 0.33. The invoked
argument is the usage of superharmonic resonances, as also stated in [134].
Collectively, these findings indeed suggest an important role of the resonant
frequency, though the exact relation remains not fully understood.

The total drag acting on these swimming organisms or robots can be decom-
posed in the contributions of the friction drag and the vortex induced drag.
The former contribution has been relatively well explored. Theoretical stud-
ies have considered the laminar boundary layer, which is either compressed or
stretched by the undulatory motion of the swimmer [95]. This effect is usu-
ally referred to as the “Lighthill boundary-layer thinning hypothesis”. More
recently, Ehrenstein et al. [35] employed high-quality numerical simulations
using body-fitted meshes to quantify and verify this hypothesis.

The vortex induced drag, which may play a significant role, has only recently
gained the attention of experimentalists. In the context of simplified mechan-
ical swimming robots, Raspa et al. [135] established a basic model to explain
the influence of the finite aspect ratio by the formation of trailing longitudi-
nal tip-vortices. The present numerical study is inspired by these experiments,
and should be seen as complimentary approach, given the difficulty of experi-
mentally measuring the instantaneous flow field appropriately. In a first step,
using rectangular swimmers, we will reproduce some experimental results
and confirm the interpretation that the tip vortices play a major role in the
drag force of the swimmer. In a second step, we move on and modify the
swimmer’s shape and find that a contracting form may be advantageous in
terms of terminal cruising speed.

7.1 Materials

The setup is illustrated in figure 7.1.1. The swimmer is tethered to the com-
putational domain and accelerates the mean fluid flow instead. In the first
part of the study, we will keep the mean flow fixed, i.e., we consider all swim-
mers at the same speed. This simplified the comparison. In a second step, the
mean flow is released and computed dynamically from the thrust force.

The material properties reported in [135] yield µexp = 0.0012 and η = 0.0134.
For numerical stability reasons, we set µ = 0.0096 instead, as will be explained
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Figure 7.1.1 – Setup used in the present work. The swimmer, which consists of a
spanwise flexible plate undergoing an imposed pitching motion α (t), is immersed in
a viscous incompressible fluid with imposed mean flow ~u∞.

later. Two-dimensional simulations confirmed that the solution is not very
sensitive to the value of µ in this regime. The swimmer’s length ℓchord =
0.15 m, the fluid density ̺ f = 1000 kg/m3, a time scale T = 1 s and the
velocity scale U = ℓchord/T have been used for normalization. The imposed
pitching motion is sinusoidal, α = αmax sin (2π f t) with αmax = 50◦. Contrary
to the experiment, we do not vary the driving frequency f but keep it fixed at
unity (thus f = 1 Hz).

7.2 Rectangular swimmers: influence of the aspect

ratio

In this section we present the results obtained for rectangular plates. The
Reynolds number is Re = Uℓchord/ν = 1000, the swimmer is computed in a
box of size 2.66× 2.00× 1.33 wherein its leading edge at mid-span is located
at x0 =

(
0.5 1.0 0.66

)
. At this Reynolds number, we found a resolution

of 512× 384× 256 to be sufficient. The original experiment is performed at
much higher Reynolds number of Re = 22500, which is currently out of scope
for direct numerical simulations. The value of the penalization parameter
is Cη = 10−3 (K = 0.19). The constant mean flow u∞ =

(
0.5 0 0

)
is

impulsively started at t = 0 (thus the initial condition is u (x, t = 0) = u∞),
and we computed a total of 5 periods. Since our discretization is periodic, a
vorticity sponge term is applied to all faces of the domain to prevent vortices
from re-entering the domain, with a parameter of εsp = 10−1, see section
2.5 for more information about that boundary condition. During the first pe-
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Figure 7.2.1 – Isosurfaces of vorticity ‖ω‖ = 18 (copper) and ‖ω‖ = 9 (blue) for
aspect ratios AR = 0.2 (top), AR = 0.7 (bottom). For AR = 0.2, the tip vortices
dominate the flow. In the AR = 0.7 case, vertical vortex tubes are visible.

riod, the imposed pitching angle is multiplied by a startup conditioner, i.e.,
α (t < 1) =

(
−20t7 + 70t6 − 84t4 + 35t4) αmax sin (2π f t), in order to avoid

an impulsively started motion, which would yield a pressure singularity. We
carry out five simulations with varying aspect ratio, AR = ℓspan/ℓchord ={

0.2 0.3 0.5 0.7 ∞
}

. The latter value indeed corresponds to a 2D
simulation, because the vortical structures are stable at Re=1000, which
was verified by simulating a plate that extends periodically throughout the
z-direction.

The vortical structure of the flow field is visualized in figure 7.2.1 for the
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Figure 7.2.2 – Thrust force as a function of the aspect ratio. The solid line represents
the force predicted by the 2D approximation and the dashed line is a linear least-
squares fit through the available data points from the 3D simulations.

smallest and largest value of AR, at the beginning of the fourth stroke t =
4.05. In the AR = 0.7 case, the vertical vortex tubes can be observed. These
tubes correspond to the vortices shed in the 2D case, where AR = ∞. They
connect to the tip vortices and form ring-like structures, propagating perpen-
dicular to the mean flow which also advects them downstream. It is visi-
ble that, in the AR = 0.2 case, the tip vortices actually dominate the wake
structure—the vertical vortex tubes are not clearly distinguishable.

The cycle-averaged thrust force, that is the x-component of the hydrodynamic
force, is shown in figure 7.2.2. Note that thrust points in negative x-direction.
The solid line represents the prediction based on 2D simulations. The four 3D
simulations are marked by circles. It can be observed that the thrust scales
almost linearly with the aspect ratio. Assuming linearity, we make the ansatz

F3D
x = Fthrust · AR + Ftip

and fit the coefficients Fthrust = −0.0628 and Ftip = 0.0165 using least squares
to the data points. In the case of 2D simulations, we found F2D

x = F2D
thrust · AR

where the thrust per unit span is F2D
thrust = −0.0561. We can thus observe

that the values for the thrust per unit span are quite similar in both 3D and
2D cases, Fthrust ≈ F2D

thrust, and that the tip vortices indeed act like a constant
offset. We can thus numerically confirm the experimental results presented
by Raspa et al. [135].
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(a) (b) (c)

Figure 7.3.1 – Different shapes investigated here, termed (a) “rectangular”, (b) “ex-
panding” and (c) “contracting”. All three shapes have the same surface.

7.3 Non-rectangular swimmers: influence of the

fin shape

The results for rectangular plates illustrate the importance of tip vortices for
the total drag. Actual fish, however, have of course non-rectangular caudal
fins, with possible consequences for the vortical structures in the wake. We
choose an additional set of two different shapes, an expanding and a con-
tracting form, to study their influence on the cruising speed. All shapes have
the same surface and follow the same imposed driving motion. For simplic-
ity, we still assume the mechanical structure to be one-dimensional and with
constant µ and η, although the varying ℓspan (s) suggests that both should
depend on s. This is a first order approximation, since both µ, η are linear
in ℓspan, but as η ∝ h3 the dominant effect of the stiffness η is captured and
as µ is small anyways (light swimmer), this assumption seems justified. The
non-rectangular shapes are defined as

ℓ
exp
span (s) = 2

(
0.35

2
+ 0.525s2

)

ℓ
contr
span (s) = 2

(
1.05

2
− 0.525s2

)

and are illustrated to scale in figure 7.3.1.

Since our swimmers remain anchored to the laboratory frame and instead
move the surrounding fluid, it can be time-consuming to compute the steady
state velocity, depending on the fluid domain size. In order to access the
cruising speed, we modify the mean flow equation according to eqn. (2.6.3),
with the initial condition u∞ (t = 0) = 0. The mean flow is then set to

u∞ =
(

u∞ 0 0
)T. The fluid mass to be accelerated is set to a relatively

small value, mfluid = 0.1235, in order to speed up the computation because
the steady state is reached sooner than with larger values. Without modi-
fication, the fluid mass would be equal to the volume of the computational
domain, ℓxℓyℓz = 7.07. Figure 7.3.2 illustrates the result obtained for all
swimmers. They all reach their steady state (to a good approximation) within
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Figure 7.3.2 – Axial mean flow over time for the three different swimmers from figure
7.3.1. Solid lines is instantaneous data, dashed lines is a moving average over the
duration of one stroke.

10 strokes, but the resulting cycle-averaged cruising speed and power expen-
ditures significantly depend on the swimmer’s shape. The contracting shape
(u∞ = 0.75) outruns both the rectangular (u∞ = 0.70) and the expanding
(u∞ = 0.55) shapes in terms of the cruising speed, but requires the small-
est aerodynamic power expenditures, computed according to eqn. (3.2.8).
Another remarkable difference between the three simulations is that the ex-
panding one has the smallest trailing edge displacement d, which is due to
the larger concentration of area there. The pressure acting on the tail is thus
much higher in that case, reducing the deflection amplitude.

All swimmers have finite span and thus exhibit tip vortices, and again these
vortices offer a potential explanation for the higher cruising velocity of the
contracting shape. A priori, one might think the expanding form is advanta-
geous, since the larger trailing edge will produce larger vertical tube vortices
(cf figure 7.2.1), and thus reduce the spurious three-dimensional effects.

However, the opposite is true. Figure 7.3.3 shows the vortical structures for
the contracting and expanding shape at the same time, which is during the
steady cruising state. The tip vortices, shed in both configurations around
mid-chord, are advected downstream due to the mean flow, and they can be
associated with a zone of lower pressure. This drop in pressure creates a local
net force pointing in the direction of the vortex core, and part of which con-
tributes to the total drag force (depending on the orientation of the surface
normal relative to the x-direction). Visibly, in the contracting case, the tip
vortex quickly looses contact with the actual swimmer – its parasitic drag is
thereby reduced. The opposite is true for the expanding type swimmer: not
only does the tip vortex not loose contact with the swimmer, it does instead
even increase the portion of the swimmer influenced by the tip vortices, com-
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Figure 7.3.3 – Isosurfaces of vorticity magnitude for contacting (top) and expanding
shapes (bottom). Blue ‖ω‖ = 18, purple: ‖ω‖ = 9. In the contracting case, the tip
vortices rapidly detach from the swimmer, while they remain close to the surface in
the expanding one. This finding may explain the observed difference in performance.

pared to the rectangular swimmer. It can also be noted that the total mean
enstrophy,

〈Z〉 =
〈
˚

‖ω‖2 dx

〉
,

which is a measure for the dissipation in the fluid wake, is significantly higher
in the expanding than in the contracting case, 〈Z〉contracting = 98.7 versus
〈Z〉expanding = 127.7, indicating a higher dissipation rate in the expanding
case.
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Shape u∞ Paero d

contracting 0.75 0.16 0.62

rectangular 0.70 0.18 0.48

expanding 0.56 0.21 0.42

Table 7.1 – Cycle-averaged data (cruising speed, aerodynamic power and trailing
edge displacement amplitude) for the three swimmers.

7.4 Conclusion

We numerically simulated the flow past simplified elastic swimmer models.
These models consist of flexible plates that have a driven pitching angle at
their leading edges. In the first part, we simulated rectangular swimmers,
that are inspired by the experimental work presented in [135]. We confirmed
the finding that the tip vortices are a significant contribution to the total drag,
and thus should be taken into account when predicting the cruising speed of
these swimmers. We showed that indeed the 3D nature of these flows acts
like a parasitic drag that is virtually independent of the aspect ratio.

In a second step, with the insight gained in the first one, we investigated
shapes other than rectangular, namely a contracting and an expanding one,
and compared their cruising velocities. We found that the contracting shape is
the best, and postulate that this may possibly be explained by the tip vortices
quickly “loosing touch” to the swimmer, which reduces their influence on the
drag.
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Part IV

Conclusion and perspectives





Conclusions This work is placed in the interdisciplinary field of biologically-
inspired fluid dynamics, focusing on numerical simulations. Its contribution
is therefore twofold, with the development of numerical methods on the one
hand and applications to insect flight and swimming on the other.

The numerical method is based on the work of Kolomenskiy and Schnei-
der, who previously developed two– and three–dimensional codes, employ-
ing Fourier pseudospectral methods combined with the volume penalization
method to take obstacles into account. In various contributions, this combi-
nation proved fruitful for the simulation of fixed and moving rigid obstacles.
The present work adopts the Fourier discretization and the volume penaliza-
tion method from its precursors, but modifies the algorithm used for moving
obstacles. In particular, this algorithm allows simulating flexible, deforming
obstacles as well, but it is also found advantageous when rigid obstacles are
considered. The basic idea is to rely on the signed distance function to move
the Lagrangian mask function χ and resampling it on the Eulerian grid. This
algorithm requires no additional Fourier transformations and is simpler to
implement. The numerical code, flusi1, is open source and freely available
on the internet2. The implementation based on Fourier methods for the fluid
has advantages and drawbacks. The numerical properties are favorable in
terms of absent numerical diffusion and dispersion, and the incompressibility
constraint can be handled in a simple and efficient manner. In fact, the most
striking feature is simplicity; using tuned libraries allows to design simple and
efficient codes, and to exploit massively parallel supercomputers. The draw-
back of the approach is the equidistant grid; if grid stretching were applied,
the inversion of the Laplacian would have become a cumbersome problem.
The constraint of equidistant grids impacts performance to a variable degree:
for turbulence simulations, this grid is virtually optimal, while for simulations
with more confined phenomena, it may effectively limit the domain size.

The first application, presented in part II, considers insects with rigid wings.
Compared to previous work, the new algorithm allows to take into account
complete insects, including body, head, wings as well as details such as legs
and antennae. Furthermore, arbitrary motion of wings and body can be com-
puted, as well as free–flight simulations with some or all degrees of freedom.
Benchmarking of the code is done using configurations found in the litera-
ture, showing excellent agreement. Subsequently, we use our model to study
a bumblebee in tethered forward flight, under laminar and turbulent inflow
conditions. For the latter, homogeneous isotropic turbulence fields, also com-
puted with the same code, are used as upstream perturbations to study the
impact of turbulence on flapping flight. Our data highlight that the funda-
mental aerodynamic mechanisms, most importantly the leading edge vortex,

1Acronyme for fluid-structure interaction
2https://github.com/pseudospectators/FLUSI/
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are not destroyed by turbulent perturbations. Therefore, the averaged flight
characteristics are the same as in laminar flight, even in background turbu-
lence as intense as 99% with respect to mean flow. This is a striking dif-
ference to man-made aircrafts, where the laminar-turbulent transition in the
boundary layer can, for certain airfoils, be dramatically altered by inflow per-
turbations as small as 1%. Their aerodynamic characteristics are thus very
different under laminar and turbulent conditions. From estimations of the
impact of fluctuations in stroke-averaged forces and moments, we conclude
that flapping flight in turbulence is a control problem rather than an aerody-
namic one. Future work will consider untethered insects to further explore
the effect of turbulence on flight stability.

The third part of this thesis deals with flexible solids interacting with a fluid.
The collective long-time goal of these efforts is to replace the rigid insect
wings by flexible ones. A one–dimensional solid model has been developed
and implemented, which is used as flexible beam in two–dimensional setups
and as a plate with one rigid direction in the three-dimensional case. The
two–dimensional simulations are applied to the problem of thrust production
through flexibility, where a heaving wing section has been considered. The
pure heaving motion produces a net thrust force, owing to the non-zero effec-
tive pitching angle resulting from the deformation. We explored the link be-
tween the structural resonant and the heaving frequency, finding, similarly to
experimental work, a peak efficiency below the first resonant frequency. We
then proceed and consider three-dimensional flows interacting with plates
with one rigid and one flexible direction. Validation tests confirm that our
method is working, and we apply it then to the problem of a plate with im-
posed pitching motion. This configuration is intended to model undulatory
swimming. Based on the simulations with rectangular plates, we eventually
modify the lateral shape of the swimmer model, to take into account shapes
typically observed at the caudal fin of swimming fish. This way, our model is
interpreted more in the direction of carrangi- or thunniform swimming, rather
than undulatory. The main finding is that, surprisingly, a contracting shape
outperforms an expanding one in terms of both cruising speed and power
expenditure, though the latter form is much more typical for actual fish fins.

Perspectives It is planned to complement the Fourier based solver by a
wavelet-based adaptive solver. Especially for fluid–structure interaction, but
also for a variety of problems currently out of scope for the spectral code,
like insect swarming, this method could provide novel opportunities. The
idea has been around for an extended period of time, however, at the end
of this thesis, a robust idea is conceived on how to implement this type of
numerical method. Essentially, the method of artificial compressibility will be
combined with the volume penalization method. The former allows purely



147

explicit schemes well suited for adaptive solvers. It introduces a new parame-
ter, the “artificial speed of sound”, which allows to control to what extend the
divergence-free constraint is satisfied. First, extended testing has shown on
uniform grids that the combination allows to balance the errors made in the
boundary conditions and the incompressibility. The Fourier method heavily
favors the latter, as all our flow fields are divergence-free to machine pre-
cision. With the method of artificial compressibility, this constraint can be
relaxed and this may provide new opportunities to improve the overall error
significantly.

On the physics side, the three–dimensional fluid–structure interaction tools
are now sophisticated enough to gain valuable insight into the phenomena.
We mainly intent to apply our methods to several heaving foils in tandem, in
order to investigate the role of wing-wing interaction in four-winged insects
like dragonflies. Preliminary two–dimensional simulations as well as experi-
mental findings by Godio-Diana are promising.

The third path to be explored is the finding the optimal wing kinematics for
a model insect using genetic algorithms. In fact, the Fourier method can be
fast enough to compute thousands of realizations of, e.g., a fruit fly, and in
combination with fewer, well resolved simulations, can find the best possible
kinematics. It is of considerable interest to see the result of this optimiza-
tion for a variety of flight modes, like hovering and forward flight, and we
already implemented the automatized computational facility to perform this
optimization.
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Part V

Appendices





Appendix A

Parallel implementation

The results presented in this thesis are obtained by using high-performance
computing. In this appendix, some aspects of parallel computation and ef-
ficiency are discussed. We focus on the computation of three-dimensional
flows, because their demand for resources is considerably higher.

A.1 Data distribution

Modern high-performance computing relies on massively parallel machines,
like IDRIS’ IBM Blue Gene/Q machine “turing”, on which a big part of the
present computations have been performed. It has a total 98 304 CPU cores,
with 1 GB memory per core, yielding 96 TB memory in total. Each CPU can
only hold a portion of the data, as the total data exceeds the locally available
memory by orders of magnitude. For example, a 1152× 768× 768 simulation
using the FLUSI code allocates a total of 154 GB.

The Fourier discretization requires us to perform fast Fourier transforms (FFT)
in all three directions. However, as explained in 2.7, the Fourier transform
does not have a finite support in physical space (while it is perfectly localized
in Fourier space, see, e.g., [72]). Thefore, to perform an FFT in one direction,
say the x-direction, all data in physical space in that direction is required. FFTs
are therfore performed with the help of MPI transpose routines, meaning that
the data is redistributed among MPI processes in order to make the desired
direction contiguous, i.e., not split among CPUs. Our code performs a 1D
decomposition along the third index if the number of CPU is smaller or equal
the datapoints in z-direction, or a 2D decomposition along the second and
thrid index, if the number of CPU exceeds the number of points in the z-
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Figure A.2.1 – Parallel scaling: strong scaling tests of flusi code on IBM BlueGene /
Q machine at IDRIS, Paris.

direction. The code can thus run on nynz CPUs at most, which however is not
a limitation in practice.

A.2 Parallel scaling

Figure A.2.1 hows the speedup, i.e., s = tre f /t, where tre f and t is the elapsed
time in the reference and actual simulation, respectively. The case chosen
is a simulation of isotropic turbulence, but the speedup has been found the
same in the case of insects. Two simulation sizes, 2563 and 7683 are tested
using up to 8192 CPU cores. The reference simulation is run on 1024 cores.
The small resolution case has a speedup of about 3 at 4096 cores, while the
higher resoltion case is seen to scale almost perfectly up to 8192 cores. Many
simulations in this theses are even larger than 7683 and can therefore by run
on 16384 CPU without a loss of efficiency.



Appendix B

Details on the solid model
and its numerical solution

B.1 Beam equation with non-constant coefficients

In the derivation of the beam equation we assumed η = µ = const, which is
not striktly true if the shape of the plate varies. We here give the result of the
derivation if both µ and η depend on s, and further simplify the notation by
denoting derivatives with indices, i.e., ∂3θ/∂s3 = θsss. Terms marked in red
arise from the non-constant coefficients. The defining equation (5.1.6) for the
tension becomes

Tss − θ2
s T − µs

µ
Ts = −θs p− ηθ2

ss − 2ηθsθsss − µ
(
α̇ + θ̇

)2
− τs

−2ηssθ2
s − 5ηsθsθss +

µs

µ

(
ηθsθss + τ + ηsθ2

s

)
(B.1)

For the evolution equation, we find instead of eqn. (5.1.7):

µθ̈ = −α̈µ− ps − ηθssss + θsτ + 2Tsθs + θssT + ηθ2
s θss

−3ηsθsss − θsηsss − 3ηssθss + ηsθ3
s

+
µs

µ
(p + 2ηsθss + θsηss + θsssη − θsT) , (B.2)
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-1 0 1 ns-1 ns ns+1

Figure B.2.1 – Spatial discretization of the beam. The yellow nodes are ghost nodes
added to satisfy the non-linear boundary conditions.

which we denote as θ̈ = f (θ, T). The boundary conditions at the leading
edge, s = 0, read (clamped+imposed acceleration):

θ = 0 (B.3)

Ts + ηsθ2
s + θsθssη = K1 (B.4)

θsT − 2ηsθss − θsηss − θsssη = K2, (B.5)

where we introduced the constants

µ (0) (ẍ0 cos(α) + ÿ0 sin(α) + g sin(α))− τ (0) := K1

µ (0) (−ẍ0 sin(α) + ÿ0 cos(α) + g cos(α)) + p (0) := K2.

Finally, at the trailing edge, the boundary conditions for the free end read
(s = 1, N = M = T = 0, no tensions):

T = 0 (B.6)

ηsθs + ηθss = 0 (B.7)

ηθs = 0 (B.8)

B.2 Discretization in space and time

Spatially, the above set of equations is discretized with finite differences. Four
ghost points are added to take the four non-Dirichlet conditions into acount,
as illustrated in figure B.2.1. The discretized boundary conditions at the lead-
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ing edge read

T1 − T−1

2∆s
+ η0

(θ−1 − 2θ0 + θ1) (θ1 − θ−1)

2∆s3 + ηs,0

(
θ1 − θ−1

2∆s

)2

= K1

T0
θ1 − θ−1

2∆s
− η0

−3θ−1 + 10θ0 − 12θ1 + 6θ2 − θ3

2∆s3 . . .

−2ηs,0
θ−1 − 2θ0 + θ1

∆s²
− ηss,0

θ1 − θ−1

2∆s
= K2

and their counterparts at the trailing edge, where we employ a fourth order
discretization to take both additional nodes into account, read

ηs,ns−1
θns − θns−2

2∆s
+ ηns−1

− 1
12 θns−3 +

4
3 θns−2 − 5

2 θns−1 +
4
3 θns − 1

12 θns+1

∆s2 = 0

ηns−1

1
12 θns−3 − 2

3 θns−2 +
2
3 θns − 1

12 θns+1

∆s
= 0.

In the interior region of the beam, we use the following second order approx-
imations for the derivatives

θs,i =
− 1

2 θi−1 +
1
2 θi+1

∆s

θss,i =
θi−1 − 2θi + θi+1

∆s2

θsss,i =
− 1

2 θi−2 + θi−1 − θi+1 +
1
2 θi+2

∆s3

θssss,i =
θi−2 − 4θi−1 + 6θi − 4θi+1 + θi+2

∆s4 .

The stencil thus extends by two grid points in each direction. Therefore,
the first and last point in eqn. (B.1) and (B.2), respectively, require special
treatment with modified stencils.

To obtain the complete discrete beam equation, the second time derivative is
rewritten as a first order system by introducing w =

(
θ, θ̇
)T

. The differential
equation then reads ẇ = w. The general time marching scheme is written as

wn+1 = C3wn + C4wn−1 +
∆t

C1

(
f
(

wn+1
)
+ C2 f (wn)

)
, (B.1)

where the coefficients Ci allow switching between a first order Euler implicit
(EI1), a second order Crank-Nicolson (CN2) and a second order backward-
differentiation scheme (BDF2). The following table defines the constants for
each time marching scheme.
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C1 C2 C3 C4

EI1 1 0 1 0

CN2 2 1 1 0

BDF2 1+2ξ
1+ξ 0 (1+ξ)2

1+2ξ − ξ2

1+2ξ

All schemes are implicit and thus alleviate the time step restriction imposed
by the fourth derivative. Equation (B.1) is a non-linear system of equations
for the solution at the new time level, wn+1. Recasting it as a root problem
reads

0 = C3wn − wn+1 + C4wn−1 +
∆t

C1

(
F
(

wn+1
)
+ C2F (wn)

)
,

yielding

0 =

(
C3θn − θn+1 + C4θn−1

C3θ̇n − θ̇n+1 + C4θ̇n−1

)
(B.2)

+
∆t

C1

((
θ̇n+1

f
(
θn+1, Tn+1)

)
+ C2

(
θ̇n

f (θn, Tn)

))
.

Thus, the angular velocity at the new time level can simply be determined as

θ̇n+1 =
C1

∆t

(
θn+1 − C3θn − C4θn−1

)
− C2θ̇n.

The tension at the old time level, Tn, can be computed from θn and is thus
known. The semi-discrete evolution eqn. reads

0 = C3θ̇n + C4θ̇n−1 +
∆t

C1
C2 f (θn, Tn)

︸ ︷︷ ︸
:=K3

− θ̇n+1 +
∆t

C1
f
(

θn+1, Tn+1
)

= K3 −
C1

∆t

(
θn+1 − C3θn − C4θn−1

)
+ C2θ̇n +

∆t

C1
f
(

θn+1, Tn+1
)

= K3 + C2θ̇n +
C1

∆t

(
C3θn + C4θn−1

)

︸ ︷︷ ︸
:=K4

− C1

∆t
θn+1 +

∆t

C1
f
(

θn+1, Tn+1
)

= K4 −
C1

∆t
θn+1 +

∆t

C1
f
(

θn+1, Tn+1
)

. (B.3)

For brevity, we denote the non-linear root problem as

F (x) = 0,
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where

x =
(

θn+1
−1 θn+1

0 · · · θn+1
ns−1 θn+1

ns θn+1
ns+1 Tn+1

−1 Tn+1
0 · · · Tn+1

ns−1

)
,

and we thus have 2ns + 4 unknowns. The first six equations of F are the
discrete boundary conditions (we drop the time index n + 1 from now on to
shorten the lengthy equations, all time-dependent quantities without index
are at the new time level):

F1 = θ0

F2 =
T1 − T−1

2∆s
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We then have the (ns− 2) regular interior points for the evolution eqn. (B.3),
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hence i = 1, ns− 2. Note we skip F7 and F8 for a moment.
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]
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and then the interior points for the tension eqn. (B.1) (i = 1, ns− 1)

F7+ns+i =
Ti−1 − 2Ti + Ti+1

∆s2 −
(
− 1

2 θi−1 +
1
2 θi+1

∆s

)2

Ti

+pi
− 1

2 θi−1 +
1
2 θi+1

∆s
+ ηi

(
θi−1 − 2θi + θi+1

∆s2

)2

+2ηi
− 1

2 θi−1 +
1
2 θi+1

∆s

− 1
2 θi−2 + θi−1 − θi+1 +

1
2 θi+2

∆s3

+µi

(
α̇ +

C1

∆t

(
θi − C3θn

i − C4θn−1
i

)
− C2θ̇n

i

)2

+τs,i + 2ηss,i

(
− 1

2 θi−1 +
1
2 θi+1

∆s

)2

− µs,i

µi

− 1
2 Ti−1 +

1
2 Ti+1

∆s

+5ηs,i
− 1

2 θi−1 +
1
2 θi+1

∆s

θi−1 − 2θi + θi+1

∆s2

−µs,i

µi

(
ηi
− 1

2 θi−1 +
1
2 θi+1

∆s

θi−1 − 2θi + θi+1

∆s2

+τi + ηs,i

(
− 1

2 θi−1 +
1
2 θi+1

∆s

)2



As mentioned previously, two points near the boundary are modified since the
stencils otherwise would exceed the grid. The first point for the T-equation
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reads (green terms are modified)

F7
i=0
=

Ti−1 − 2Ti + Ti+1

∆s2 −
(
− 1

2 θi−1 +
1
2 θi+1

∆s

)2

Ti

+pi
− 1

2 θi−1 +
1
2 θi+1

∆s
+ ηi

(
θi−1 − 2θi + θi+1

∆s2

)2

+2ηi
− 1

2 θi−1 +
1
2 θi+1

∆s

− 5
2 θi + 9θi+1 − 12θi+2 + 7θi+3 − 3

2 θi+4

∆s3

+µi

(
α̇ +

C1

∆t

(
θi − C3θn

i − C4θn−1
i

)
− C2θ̇n

i

)2

+τs,i + 2ηss,i

(
− 1

2 θi−1 +
1
2 θi+1

∆s

)2

− µs,i

µi

− 1
2 Ti−1 +

1
2 Ti+1

∆s

+5ηs,i
− 1

2 θi−1 +
1
2 θi+1

∆s

θi−1 − 2θi + θi+1

∆s2

−µs,i

µi

(
ηi
− 1

2 θi−1 +
1
2 θi+1

∆s

θi−1 − 2θi + θi+1

∆s2

+τi + ηs,i

(
− 1

2 θi−1 +
1
2 θi+1

∆s

)2



and eventually, the last point for the evolution equation (green terms are
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modified)

F8
i=ns−1
= K4,i −

C1

∆t
θi +

∆t

µiC1

[
−ηi

θi−2 − 4θi−1 + 6θi − 4θi+1 + θi+2

∆s4

+τi
− 1

2 θi−1 +
1
2 θi+1

∆s
+ 2
− 1

2 Ti−2 + 2Ti−1 +
3
2 Ti

∆s

− 1
2 θi−1 +

1
2 θi+1

∆s

+Ti
θi−1 − 2θi + θi+1

∆s2 + ηi

(
− 1

2 θi−1 +
1
2 θi+1

∆s

)2
θi−1 − 2θi + θi+1

∆s2

−3ηs,i
− 1

2 θi−2 + θi−1 − θi+1 +
1
2 θi+2

∆s3 − ηsss,i
− 1

2 θi−1 +
1
2 θi+1

∆s

−3ηss,i
θi−1 − 2θi + θi+1

∆s2 + ηs,i

(
− 1

2 θi−1 +
1
2 θi+1

∆s

)3

+
µs,i

µi

(
pi + 2ηs,i

θi−1 − 2θi + θi+1

∆s2 +

+ηss,i
− 1

2 θi−1 +
1
2 θi+1

∆s
+ ηi
− 1

2 θi−2 + θi−1 − θi+1 +
1
2 θi+2

∆s3

−Ti
− 1

2 θi−1 +
1
2 θi+1

∆s

)
− α̈µ2

i − ps,i

]

The non-linear root problem F (x) = 0 is now defined, and we employ Newton-
Raphson iterations to solve it, which yields the following solution procedure

1. Given xn, guess xn+1
0 using an explicit time marching scheme

2. Calculate F
(

xn+1
i

)

3. Calculate the Jacobian J
=
= Jkl =

∂Fk(xn+1
i )

∂xl

4. Solve the linear system J
=
· δxi = −F

(
xn+1

i

)
to get the increment δxn+1

i

5. Set the new vector xn+1
i+1 = xn+1

i + δxn+1
i

6. If
∣∣∣δxn+1

i

∣∣∣ is sufficiently small (we used
∣∣∣δxn+1

i

∣∣∣ < ε = 10−10) then

abort, else go back to 1

It is possible to construct the Jacobian using finite differences for x, but this
requires (2ns + 4)2 evaluations of the function F and is thus not suitable. We
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thus choose to analytically derive the Jacobian, which is then hard-coded in
the numerical code. It is defined as

Jij =
∂Fi

∂xj
=




∂F1
∂θ−1

· · · ∂F1
∂θns+1

∂F1
∂T−1

· · · ∂F1
∂Tns−1

...
. . .

...
...

. . .
...

∂F2ns+4
∂θ−1

· · · ∂F2ns+4
∂θns+1

∂F2ns+4
∂T−1

· · · ∂F2ns+4
∂Tns−1




For the first equation the derivatives yield

∂F1

∂θ−1
= 0

∂F1

∂θ0
= 1

For the second equation the derivatives yield

∂F2

∂θ−1
= η0

θ0 − θ−1

∆s3 − ηs,0
θ1 − θ−1

2∆s2

∂F2

∂θ0
= −η0

θ1 − θ−1

∆s3

∂F2

∂θ1
= −η0

θ0 − θ−1

∆s3 + ηs,0
θ1 − θ−1

2∆s2

∂F2

∂θ2
= 0

∂F2

∂θ3
= 0

∂F2

∂T−1
= − 1

2∆s

∂F2

∂T0
= 0

∂F2

∂T1
=

1
2∆s
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For the third equation the derivatives yield

∂F3

∂θ−1
= −2∆sηs,0 − 3

2 η0 +
∆s2

2 (T0 − ηss,0)

∆s3

∂F3

∂θ0
= −5η0 − 4∆sηs,0

∆s3

∂F3

∂θ1
=

6η0 − 2∆sηs,0 +
∆s2

2 (T0 − ηss,0)

∆s3

∂F3

∂θ2
= −3

η0

∆s3

∂F3

∂θ3
=

η0

2∆s3

∂F3

∂T0
=

θ1 − θ−1

2∆s

For the fourth equation the derivatives yield

∂F4

∂Tns−1
= 1

For the fifth equation the derivatives yield

∂F5

∂θns−3
= − ηns−1

12∆s2

∂F5

∂θns−2
=

8ηns−1 − 3∆sηs,ns−1

6∆s2

∂F5

∂θns−1
= −5ηns−1

2∆s2

∂F5

∂θns
=

8ηns−1 + 3∆sηs,ns−1

6∆s2

∂F5

∂θns+1
= − ηns−1

12∆s2

For the sixth equation the derivatives yield

∂F6

∂θns−3
=

ηns−1

12∆s

∂F6

∂θns−2
= −2ηns−1

3∆s

∂F6

∂θns
=

2ηns−1

3∆s

∂F6

∂θns+1
= −ηns−1

12∆s
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After the first six equations, which represent the boundary conditions, we
treat the equations 7 and 8, which are like the regular interior points, but with
some terms modified in order to take the ghost nodes into account, while not
exceeding the grid. For equation seven we find

∂F7

∂θi−1
=

µs,i

µi

(
ηi

1
2 θi−1 − 1

2 θi+1

∆s3 − ηs,i

1
2 θi−1 − 1

2 θi+1

∆s2 + ηi
θi−1 − 2θi + θi+1

2∆s3

)

− pi

2∆s
+ ηi

5
2 θi − 9θi+1 + 12θi+2 − 7θi+3 +

3
2 θi+4

∆s4

+ηi
2θi−1 − 4θi + 2θi+1

∆s4 − Ti

1
2 θi−1 − 1

2 θi+1

∆s2 − 5ηs,i

1
2 θi−1 − 1

2 θi+1

∆s3

+2ηss,i

1
2 θi−1 − 1

2 θi+1

∆s2 − 5ηs,i
θi−1 − 2θi + θi+1

2∆s3

∂F7

∂θi
=

(
5ηs,i − ηi

µs,i

µi

)
θi−1 − θi+1

∆s3 − ηi
3θi−1 − 16θi + 13θi+1

2∆s4

−2C1µi
C1C3θn

i − α̇∆t− C1θi + C1C4θn−1
i + C2∆tθ̇n

i

∆t2

∂F7

∂θi+1
=

pi

2∆s
−
(

5ηs,i − ηi
µs,i

µi

)
θi − θi+1

∆s3 +

(
Ti − 2ηss,i + ηs,i

µs,i

µi

)
θi−1 − θi+1

2∆s2

−ηi
13θi + 14θi−1 − 40θi+1 + 24θi+2 − 14θi+3 + 3θi+4

2∆s4

∂F7

∂θi+2
= 12ηi

θi−1 − θi+1

∆s4

∂F7

∂θi+3
= −7ηi

θi−1 − θi+1

∆s4

∂F7

∂θi+4
= 3ηi

θi−1 − θi+1

2∆s4

∂F7

∂Ti−1
=

∆s
µs,i
µi

+ 2

2∆s2

∂F7

∂Ti
= − (θi−1 − θi+1)

2

4∆s2 − 2
∆s2

∂F7

∂Ti+1
= −

∆s
µs,i
µi
− 2

2∆s2
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And for equation eight

∂F8

∂θi−2
= −

∆tηi − 1
2 ∆s∆t

(
3ηs,i − ηi

µs,i
µi

)

C1µi∆s4

∂F8

∂θi−1
= ∆t

ηsss,i − τi + Ti
µs,i
µi
− ηss,i

µs,i
µi

2C1µi∆s

−∆t
24ηs,i − 8ηi

µs,i
µi

+ 3ηs,iθ
2
i−1 + 3ηs,iθ

2
i+1 − 6ηs,iθi−1θi+1

8C1∆s3µi

−∆t
Ti + 4Ti−1 − Ti−2 + 6ηss,i − 4ηs,i

µs,i
µi

2C1∆s2µi

−∆tηi

4θiθi−1 − 4θiθi+1 + 2θi−1θi+1 − 3θ2
i−1 + θ2

i+1 − 16

4C1∆s4µi

∂F8

∂θi
= −C1

∆t
∆t

6ηi +
1
2 ηiθ

2
i−1 +

1
2 ηiθ

2
i+1 − ηiθi−1θi+1

C1∆s4µi

+∆t∆s2
2Ti − 6ηss,i + 4ηs,i

µs,i
µi

C1∆s4µi

∂F8

∂θi+1
= ∆t

32ηi − 2ηiθ
2
i−1 + 6ηiθ

2
i+1 + 8ηiθiθi−1 − 8ηiθiθi+1 − 4ηiθi−1θi+1

8C1∆s4µi

+∆t
24ηs,i − 8ηi

µs,i
µi

+ 3ηs,iθ
2
i−1 + 3ηs,iθ

2
i+1 − 6ηs,iθi−1θi+1

8C1∆s3µi

−∆t
4ηsss,i − 4τi + 4Ti

µs,i
µi
− 4ηss,i

µs,i
µi

8C1∆sµi

+∆t
20Ti + 16Ti−1 − 4Ti−2 − 24ηss,i + 16ηs,i

µs,i
µi

8C1∆s2µi

∂F8

∂θi+2
= −

∆tηi +
1
2 ∆s∆t

(
3ηs,i − ηi

µs,i
µi

)

C1∆s4µi

∂F8

∂Ti−2
= ∆t

θi−1 − θi+1

2C1∆s2µi

∂F8

∂Ti−1
= −2∆t

θi−1 − θi+1

C1∆s2µi

∂F8

∂Ti
= −

1
2 ∆t (4θi + θi−1 − 5θi+1)− 1

2 ∆s∆t
µs,i
µi

(θi−1 − θi+1)

C∆s2µi

We now treat the interior points for the evolution equation
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∂F8+i

∂θi−2
= −

∆tηi − 1
2 ∆s∆t

(
3ηs,i − ηi

µs,i
µi

)

C1∆s4µi

∂F8+i

∂θi−1
= ∆t

2Ti + Ti−1 − Ti+1 − 6ηss,i + 4ηs,i
µs,i
µi

2C1∆s2µi

−∆t
24ηs,i − 8ηi

µs,i
µi

+ 3ηs,iθ
2
i−1 + 3ηs,iθ

2
i+1 − 6ηs,iθi−1θi+1

8C1∆s3µi

+∆t
ηsss,i − τi + Ti

µs,i
µi
− ηss,i

µs,i
µi

2C1∆sµi

−∆tηi

4θiθi−1 − 4θiθi+1 + 2θi−1θi+1 − 3θ2
i−1 + θ2

i+1 − 16

4C1∆s4µi

∂F8+i

∂θi
= −C1

∆t
− ∆t

6ηi +
1
2 ηiθ

2
i−1 +

1
2 ηiθ

2
i+1 − ηiθi−1θi+1

C1∆s4µi

−∆t
2Ti − 6ηss,i + 4ηs,i

µs,i
µi

C1∆s2µi

∂F8+i

∂θi+1
= ∆t

2Ti − Ti−1 + Ti+1 − 6ηss,i + 4ηs,i
µs,i
µi

2C1∆s2µi

+∆t
24ηs,i − 8ηi

µs,i
µi

+ 3ηs,iθ
2
i−1 + 3ηs,iθ

2
i+1 − 6ηs,iθi−1θi+1

8C1∆s3µi

−∆t
ηsss,i − τi + Ti

µs,i
µi
− ηss,i

µs,i
µi

2C1∆sµi

+∆tηi

4θiθi−1 − 4θiθi+1 − 2θi−1θi+1 − θ2
i−1 + 3θ2

i+1 + 16

4C1∆s4µi

∂F8+i

∂θi+2
= −∆t

ηi +
1
2 ∆s

(
3ηs,i − ηi

µs,i
µi

)

C1∆s4µi

∂F8+i

∂Ti−1
= ∆t

θi−1 − θi+1

2C1∆s2µi

∂F8+i

∂Ti
=

∆t
∆s2 (θi−1 − 2θi + θi+1) +

µs,i
µi

1
2 θi−1− 1

2 θi+1
∆s

C1µi

∂F8+i

∂Ti+1
= −∆t

θi−1 − θi+1

2C1∆s2µi



Details on the solid model and its numerical solution 167

And eventually the coeffiecents for the Tension-equation are

∂F7+ns+i

∂θi−2
= ηi

θi−1 − θi+1

2∆s4

∂F7+ns+i

∂θi−1
=

(
5ηs,i − ηi

µs,i

µi

)
θi − θi−1

∆s3 − pi

2∆s

−
(

Ti − 2ηss,i + ηs,i
µs,i

µi

)
θi−1 − θi+1

2∆s2

−ηi
8θi − θi−2 − 8θi+1 + θi+2

2∆s4

∂F7+ns+i

∂θi
= 10ηs,i

1
2 θi−1 − 1

2 θi+1

∆s3

−ηi
4θi−1 − 8θi + 4θi+1

∆s4

−2C1µi

C2θ̇n
i − α̇ + C1

∆t

(
C3θn

i − θi + C4θn−1
i

)

∆t

−2ηi
µs,i

µi

1
2 θi−1 − 1

2 θi+1

∆s3

∂F7+ns+i

∂θi+1
=

pi

2∆s
−
(

5ηs,i − ηi
µs,i

µi

)
θi − θi+1

∆s3

+

(
Ti − 2ηss,i + ηs,i

µs,i

µi

)
θi−1 − θi+1

2∆s2

−ηi
8θi − 8θi−1 + θi−2 − θi+2

2∆s4

∂F7+ns+i

∂θi+2
= −ηi

θi−1 − θi+1

2∆s4

∂F7+ns+i

∂Ti−1
=

∆s
µs,i
µi

+ 2

2∆s2

∂F7+ns+i

∂Ti
= − (θi−1 − θi+1)

2

4∆s2 − 2
∆s2

∂F7+ns+i

∂Ti+1
= −

∆s
µs,i
µi
− 2

2∆s2
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Flying and swimming animals have developed efficient ways to produce the �uid 

�ow that generates the desired forces for their locomotion. These bio-inspired 

problems couple �uid dynamics and solid mechanics with complex geometries and 

kinematics. The present thesis is placed in this interdisciplinary context and uses 

numerical simulations to study these �uid--structure interaction problems with 

applications in insect �ight and swimming �sh. Based on existing work on rigid 

moving obstacles, using an efficient Fourier discretization, a numerical method has 

been developed, which allows the simulation of �exible, deforming obstacles as 

well, and provides enhanced versatility and accuracy in the case of rigid obstacles. 

The method relies on the volume penalization method and the �uid discretization 

is still based on a Fourier discretization. The code, designed to run on massively 

parallel supercomputers, is entirely open source and freely available on the 

internet. We �rst apply this method to insects with rigid wings, where the body 

and other details, such as the legs and antennae, can be included. After presenting 

detailed validation tests, we proceed to studying a bumblebee model in fully 

developed turbulent �ow. Our simulations show that turbulent perturbations 

affect �apping insects in a different way than human-designed �xed-wing 

aircrafts. While in the latter, upstream perturbations can cause transitions in the 

boundary layer, the former do not present systematical changes in aerodynamic 

forces. We conclude that insects rather face control problems in a turbulent 

environment than a deterioration in force production. In the next step, we design 

a solid model, based on a one--dimensional beam equation, and simulate coupled 

�uid--solid systems. Applications deal, in a two-dimensional setup, with insect 

�ight, but also with simpli�ed three--dimensional models for swimming �sh. In 

these 'swimmers', consisting of a �exible plate with one rigid direction, we study 

the in�uence of the shape on the hydrodynamic efficiency. A contracting shape, as 

found in some amphibians, is found to swim faster and require less power than an 

expanding shape, which is more similar to most caudal �ns observed in �sh. We 

present evidence that this �nding can be explained by a favorable interaction with 

the tip-vortices in the case of the contracting shape.
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