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We present a novel scheme for the numerical simulation of fluid–structure interaction 
problems. It extends the volume penalization method, a member of the family of immersed 
boundary methods, to take into account flexible obstacles. We show how the introduction 
of a smoothing layer, physically interpreted as surface roughness, allows for arbitrary 
motion of the deformable obstacle. The approach is carefully validated and good agreement 
with various results in the literature is found. A simple one-dimensional solid model is 
derived, capable of modeling arbitrarily large deformations and imposed motion at the 
leading edge, as it is required for the simulation of simplified models for insect flight. 
The model error is shown to be small, while the one-dimensional character of the model 
features a reasonably easy implementation. The coupled fluid–solid interaction solver is 
shown not to introduce artificial energy in the numerical coupling, and validated using a 
widely used benchmark. We conclude with the application of our method to models for 
insect flight and study the propulsive efficiency of one and two wing sections.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The numerical simulation of fluid–structure interaction is of fundamental interest in computational fluid dynamics (CFD) 
given the challenging applications encountered, for example the numerical simulation and optimization of insect flight, 
swimming fish or sailing boats. The fluid can deform the solid, which in turn alters vortical structures, and vice versa. The 
key feature is thus that the fluid–solid interface is not known a priori, but rather is a part of the solution itself. Some 
systems can be simplified by considering rigid solid bodies, a rather strong simplification that still proves to be challenging 
by its own, if the obstacle moves or features a complicated shape. Aside from the experimental approach, the method of 
numerically solving the coupled problem proved suitable for a large variety of problems, from swimming fish [1,2], flying 
insects [3,4] to parachutes [5,6].

The time-varying interface in fluid–structure interaction (FSI) problems is more than an ingredient to be added to ex-
isting codes; it rather required developing entirely new tools, especially if large deformations are involved, which is the 
case in the present work. A broad classification of FSI algorithms can be made either by the coupling of fluid and solids, 
where monolithic and partitioned solvers can be distinguished, or by the fluid mesh, which can either be conformal or 
non-conformal.
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Monolithic solvers [7–9] describe both media, fluid and solid, using one set of equations that are solved using same 
numerical schemes for both components, with all interaction resolved. These approaches are usually very stable and accu-
rate, but require a significant code development effort, and their highly problem-specific coding makes it difficult to provide 
them with new features. Partitioned solvers, on the other hand, use distinct approaches for fluid and solid, allowing the 
use of legacy codes that have been developed previously. Special care has to be devoted to treating the coupling condition, 
which may cause numerical instabilities [10–14].

Another distinctive feature of FSI solvers is the fluid mesh, which may be body-fitted or not. In the former group, Gomes 
et al. [15] used a structured, partitioned mesh that matches the interface of a flexible appendix in the wake of a cylinder, 
and studied the flow-induced vibrations both numerically and experimentally. A general difficulty of this family of methods 
is the generation of suitable mesh, a question which has been addressed for example by Wick [16] for structured, moving 
meshes or by Bathe et al. [17] based on unstructured grids. These methods have been used successfully for a wide range of 
problems [18–20].

Despite their success, alternatives to the classical methods have been developed. These approaches do not require body-
fitted moving grids, but rather rely on a fixed grid. The obstacle is then taken into account by either locally modifying the 
discretization, or by adding specific terms to the underlying equations. Immersed boundary techniques which are still of 
rising interest in CFD are particularly attractive due to their simplicity in terms of implementation in existing solvers and 
their flexibility in terms of handling non-academic geometries moving or even deforming in time. This branch has been 
pioneered by Peskin [21–23] and has been popularized since around a decade and a half now. The key feature of these 
methods, which are also used in the present work, is their simplicity. Arbitrary geometries can easily be incorporated in 
existing fluid solvers, and the fixed fluid mesh allows using fast solvers. Such an approach has been used to simulate thrust 
production of plunging foils [24], investigate the stability of a foil in uniform stream [25] or for elastic swimmer models 
[26], to name but a few. An overview can also be found in [27]. The fluid–structure interaction solver presented in this pa-
per belongs to this category, relying on the volume penalization method [28–30], which belongs to the family of immersed 
boundary and fictitious domain methods.

This article is a part of our on-going work on the development of a tool for numerical simulation of the flapping flight of 
insects. The basic Fourier pseudo-spectral method with volume penalization for modeling rigid flapping wings was proposed 
in [31], extended to three-dimensional flows in [32] and successfully employed to explore aspects of insect flight such as 
the dynamics of leading-edge vortices [33] and the force balance during takeoff [34].

Though the rigid wing assumption proved to be useful for understanding some basic aerodynamic mechanisms of insect 
flight, it is recognized that insect wings can undergo deformation that significantly affects the aerodynamic forces [35]. 
The mechanics of flapping flight is essentially three-dimensional. The relative importance of chordwise, spanwise and twist 
deformations depends on the species and the overall effect of the wing flexibility varies [36,3,37]. However, in some cases, 
the problem can be simplified by only considering one type of deformations. For example, flexible membrane wings driven 
by stiff leading edges have been used for micro air vehicles [38]. The efficiency of this design strongly depends on the 
chordwise flexibility, and, even if the flow is three-dimensional, a two-dimensional model can explain many experimental 
observations [39].

In view of the above, in this work we focus on modeling the chordwise flexibility only. We consider a two-dimensional 
approximation, and we develop a numerical method for studying the propulsion of flexible flapping foils. There have been a 
number of numerical methods proposed for this problem that differ in their treatment of the fluid, the solid model and the 
interface. For high Reynolds number fluid flows, vortex methods have been employed [40,41], as well as the solution of the 
Navier–Stokes equations using body-fitted grids [42,43]. Navier–Stokes solvers on Cartesian grids and immersed boundary 
methods have been used at lower Reynolds numbers [44–46]. Solid solvers based on finite element [43,4] of finite difference 
[40] methods have been developed.

In this work, we propose a technique for fluid–structure interaction based on the volume penalization method, which 
was proposed for modeling and computing flow around fixed obstacles with complicated geometries on simple numerical 
grids [28]. It is physically motivated by replacing the solid obstacle by a porous medium and its distinctive feature is the 
existence of a rigorous convergence proof [29] which shows that the solution of the penalized Navier–Stokes equations 
tends indeed towards the exact solution of Navier–Stokes imposing no-slip boundary conditions. In [31], a first extension 
to moving, rigid obstacles has been presented. The present article is the successor to this paper and develops techniques 
required for the computation of flexible obstacles.

The remainder of this article is organized as follows. First, we summarize the fluid solver and the volume penalization 
method we will use in this article. In the next step we address the question how the free penalization parameter of this 
method can be chosen in order to optimize its precision. In Section 4, we extend the method to deal with fluid–structure 
interaction and derive an adequate solid model to be used in the simulations. The method is then extensively validated. In 
the last section, we apply our method to simplified models for insect flight and study the propulsive efficiency of heaving 
foils. Finally, conclusions are drawn and an outlook on future work is given.
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Fig. 1. Domain definitions. The original Dirichlet problem in the fluid domain Ω f is replaced by the penalized problem in Ω = Ω f ∪ Ωs ∪ Ωsp , where Ω is 
the two-dimensional torus T2. The solid domains Ωs represent solid obstacles, while the sponge domain Ωsp is used to prevent the obstacles’ wakes from 
re-entering the domain.

2. Governing equations and numerical method

2.1. Governing equations

We consider a viscous, incompressible Newtonian fluid governed by the Navier–Stokes equations, in a two-dimensional, 
periodic domain Ω f , with an immersed obstacle Ωs , i.e. Ω f = T

2\Ωs:

∂t u +
( −ωu y

ωux

)
= F p − ∇q + 1

Re
∇2u (1a)

∇ · u = 0 (1b)

u|∂Ωs(t)(s, t) = us(s, t) (1c)

u(x, t = 0) = u0(x) (1d)

where s is a curvilinear coordinate along the fluid–solid interface ∂Ωs , u(x, t) is the velocity, q(x, t) is the total pressure, 
F p(t) is an external force, ω = ∇ × u is the vorticity and Re = u∞�/ν is the Reynolds number, based on the free-stream 
velocity u∞ , a length scale � and the kinematic viscosity ν . Normalization units are chosen such that the density � is 
unity. The external force F p is equivalent to the presence of an externally imposed pressure gradient. Indeed the term ∇q
has by construction vanishing spatial average, since Ω f is periodic. Thus, ∇q cannot model an external pressure gradient. 
Problem (1a)–(1d) can be challenging to solve numerically if the fluid–solid interface features a complicated, time-dependent
geometry, which is the case in the present article.

To solve the Dirichlet problem (1a)–(1d) numerically, we use the volume penalization method [28,29].
Thus we consider a computational domain Ω , which is the two-dimensional torus T2. The original domain Ω f is embed-

ded into Ω , see Fig. 1. Eq. (1a) is supplemented by adding a penalization term to impose the Dirichlet boundary condition 
on ∂Ωs:

∂t u +
( −ωu y

ωux

)
= F p − ∇q + 1

Re
∇2u − χ

ε
(u − us) (2a)

∇ · u = 0 (2b)

u(x, t = 0) = u0(x) (2c)

where

χ(x, t) =
{

1 x ∈ Ω s

0 x ∈ Ω f
(3)

is the mask function, us is the velocity field of the solid in Ωs and ε � 1 is the so-called penalization parameter. Note 
that Eqs. (2a)–(2c) do no longer include Dirichlet boundary conditions, as all geometric information is now encoded in 
the χ -function. In view of our application to moving boundaries, we will allow the χ -function to smoothly fade from the 
fluid to the solid, using interim values between 0 and 1. This gives rise to a thin smoothing layer, as specified later. The 
penalization approach is physically motivated by the intuition that a solid wall can be modeled as a permeable solid with 
small permeability ε.

Using the penalization method, one enjoys a significant reduction in computational complexity, as the discretization 
scheme can be chosen independently of the geometry at hand. This, in turn, implies that Eqs. (2a)–(2c) can be solved on a 
regular Cartesian grid.

For two-dimensional flows exclusively considered in this work, it is convenient to work with the vorticity-velocity for-
mulation, since the vorticity is scalar-valued in this case. The governing equation then reads

∂tω + (u · ∇)ω = 1 ∇2ω − ∇ ×
(

χ
(u − us)

)
. (4)
Re ε
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The velocity can be determined as u = ∇⊥ψ , introducing the streamfunction ψ , which satisfies ∇2ψ = ω, and ∇⊥ =
(−∂y, ∂x)

T as the orthogonal gradient. The velocity u is defined up to an irrotational contribution that can be forced in-
dependently, i.e. u = ∇⊥ψ + U . Since the only periodic potential flow is a constant velocity, U = u∞ can be interpreted as 
the mean velocity. The mean flow u∞ can be forced to a desired value, or it can be determined dynamically by imposing 
an external pressure force. In the latter case, an ordinary differential equation for u∞ can be derived by spatially averaging 
Eq. (2a),∫

T2

∂t u dx +
∫
T2

ω × u dx

︸ ︷︷ ︸
=0

= F p −
∫
T2

∇q dx

︸ ︷︷ ︸
=0

+ 1

Re

∫
T2

∇2u dx

︸ ︷︷ ︸
=0

−
∫
T2

χ

ε
(u − us)dx

du∞
dt

= F p −
∫
V

χ

ε
(u − us)dx.

A Poisson equation for the total pressure q is obtained by taking the divergence of Eq. (2a), yielding

−∇2q = ∇ ·
( −ωu y

ωux

)
− ∇ ·

(
χ

ε
(u − us)

)
, (5)

where we note that the penalization term itself is not divergence-free. The hydrostatic pressure p is then obtained by 
subtracting the kinetic energy from the total pressure, i.e. p = q − 1

2 u · u.

2.2. Discretization

Eqs. (2a)–(2c) can be discretized with an arbitrary discretization scheme. In particular, we can enjoy a fast and accurate 
Fourier pseudo-spectral discretization on a regular Cartesian mesh [47,48]. Hence, we represent the vorticity and all other 
variables as truncated Fourier series:

ω(x, t) =
Nx/2−1∑

kx=−Nx/2

N y/2−1∑
ky=−N y/2

ω̂(k, t)exp(ιk · x) (6)

where k = (kx, ky)
T is the wave vector, ι = √−1 and the hat superscript denotes the Fourier coefficients. The fast Fourier 

transform (FFT) is used to compute the Fourier coefficients with N log(N) complexity, where N = NxN y . Domain lengths dif-
ferent from 2π can easily be rescaled. The gradient and Laplace operator can then be computed by multiplying with ιk and 
−|k|2, respectively. Products are evaluated in physical space, thus avoiding expensive convolutions with O(N2) complexity. 
Denoting the Fourier transform with F , i.e. ω̂ =F(ω), we can write the semi-discrete version of Eq. (4):

∂tω̂ = −F
(
u ·F−1(ιkω̂)

) − 1

Re
|k|2ω̂ − ιk ×F

(
χ

η
(u − us)

)
(7)

û = ιk⊥

|k|2 ω̂ + u∞, |k| 
= 0 (8)

The Fourier coefficients are dealiased using the 2/3 rule. Due to the diagonality of the Laplacian in Fourier space, a Poisson 
equation can be solved without solving a linear system, as can be seen from Eq. (8). Eq. (7) is yet to be discretized in time. 
We can again enjoy the diagonality of the Laplace-operator to integrate the diffusive term exactly. This method is known as 
integrating factor technique. To simplify the notation, we rewrite Eq. (7) as

∂tω̂ + 1

Re
|k|2ω̂ = f̂ (ω̂) (9)

We can easily find the solution of the homogeneous problem. The solution of the complete equation (9) then reads

ω̂
(
k, tn+1) = ω̂

(
k, tn)

exp

(
−�t

Re
|k|2

)
+

tn+1∫
tn

exp

(
− τ

Re
|k|2

)
f̂
(
ω

(
x, tn+1 − τ

))
dτ . (10)

The Duhamel integral on the right hand side is discretized with an explicit Adams–Bashforth scheme of second order 
accuracy. The exact treatment of the diffusive term avoids introducing an additional stability condition on the time step �t .

On the other hand, the penalty term introduces additional numerical stiffness and thus imposes a restriction on the time 
step. Using this time marching scheme, the stability condition for the time step is

�t ≤ min

(
η,CFL

�xα

umax

)
, 0 < CFL < 1 (11)

where α = 4/3 [49]. Further details about this time marching scheme and the spatial discretization can be found in [50,31].
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2.3. Hydrodynamic forces

The hydrodynamic forces acting on the solid obstacles can be computed by integrating the stress tensor over the surface:

F =
∮

∂Ωs

σ · n dγ . (12)

σ = −∇p + ν

2

(∇u + (∇u)T )
(13)

If one is interested in the integral forces only, as opposed to the local distribution, volume integration can be employed. 
Volume integrals are computationally more efficient than surface integrals. We consider a control volume V , that may or 
may not coincide with an obstacle. Integrating (2a) over V and rearranging yields:

F =
∮
∂V

σ · n dγ =
∫
V

χ

η
(u − us)dV +

∫
V

(∂t u + u · ∇u)dV (14)

where we used∫
V

ν∇2u − ∇p dV =
∫
V

∇ · σ dV =
∮
∂V

σ · n dγ .

If V coincides with an obstacle at rest, then (14) reduces to its first term, F = ∫
V

χ
η udV , which is the classical formula [28]. 

If V coincides with a moving obstacle, then we are left with the additional second term known as unsteady correction. 
If the obstacle is rigid, it can be computed as V su̇s , as described in [51], where V s is the obstacles’ volume and u̇s its 
acceleration. If the object is flexible, the unsteady correction has to be computed numerically. This can be done by either 
explicitly deriving the integral over the solid velocity field, d/dt

∫
V χusdV , or by integrating the right hand side of the pe-

nalized Navier–Stokes equation (2a). In the present work, we choose the former way and numerically integrate the unsteady 
correction.

Analogously, the moment on the obstacle can be computed using

M =
∮
∂V

r × (σ · n)dγ =
∫
V

r × (∂t u + u · ∇u)dV +
∫
V

r × χ

η
(u − us)dV (15)

where r = x−xc is the position vector relative to the center of gravity. Again the unsteady correction appears, which reduces 
to 

∫
V r × (∂t u + u · ∇u)dV = J cΘ̈c in the case of rigid objects. Therein, J c is the geometrical moment of inertia and Θ is the 

angle of rotation.

2.4. Wake removal techniques

The inherent periodicity of Fourier methods can be alleviated by again using the volume penalization method. Since we 
work with the vorticity formulation of the Navier–Stokes equations, we can directly use the penalty method to impose a 
Dirichlet boundary condition on the vorticity, thus preventing the wake from re-entering the domain. The corresponding 
domain Ωsp is illustrated in Fig. 1. This can be done by adding another penalization term to Eq. (4):

∂tω + (u · ∇)ω = 1

Re
∇2ω − ∇ ×

(
χ

ε
(u − us)

)
− χω

sp

εω
sp

(ω − ω0) (16)

where χω
sp is the mask function of the vorticity sponge. This technique will be used for simulations of unbounded flows, 

such as the simulations of the spanwise wing sections of flapping wings in Section 5. The desired vorticity profile ω0 is 
usually zero.

In the case of a channel flow with a given Dirichlet condition on the velocity, one can use an alternative technique and 
directly impose a Dirichlet condition on the velocity, as it was already done for the obstacle:

∂tω + (u · ∇)ω = 1

Re
∇2ω − ∇ ×

(
χ

ε
(u − us) + χu

sp

εu
sp

(u − u0)

)
. (17)

The difference between the actual obstacle and the sponge is that χu
sp does not depend on time. Note that the supplemen-

tary term in Eq. (16) does not appear in the Poisson equation for the pressure (5), while the one in Eq. (17) does.
In both cases, the respective penalization parameters can be chosen independently. In general, the upstream influence of 

the sponges should be minimized. This can be achieved by either choosing a large corresponding ε, or by smoothing the 
χω,u

sp functions accordingly. Both u and ω sponge techniques can also be combined, as discussed in Section 5.1.
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Fig. 2. Relative L2 error ‖uex − uN
ε ‖/‖uex‖ for the Taylor–Couette flow. Left: convergence with respect to ε. Resolutions are 322 (�), 642 (©), 1282 (+), 

2562 (�) and 5122 (�). The dashed line marks the √ε slope. Right: convergence with respect to �x. Here, ε is slaved to �x: ε = ε0(�x/�x0)2 where the 
penalty parameter ε0 at the coarsest resolution is 10−2 (�), 2.5 · 10−4 (©), 5 · 10−4 (+) and 10−3 (�). Note an intermediate value ε yields best results. 
Dashed lines indicate first (top) and second (bottom) order convergence.

3. Convergence properties: how to choose ε?

The penalization method described previously is proved to converge to the solution of the original Dirichlet problem in 
the limit ε → 0, with a convergence rate of O(

√
ε) [28,29]. These proofs are obtained using rigorous mathematics in the 

continuous setting and thus neglect the aspect of discretization, which is important from a practical point of view.
The error of the numerical solution of the penalized problem (2a)–(2c) with respect to the original problem can be 

decomposed into two components,∥∥uex − uN
ε

∥∥ ≤ ∥∥uex − uε

∥∥ + ∥∥uε − uN
ε

∥∥, (18)

where uex is the exact solution of (1a)–(1d) and uε , uN
ε is the exact and numerical solution of (2a)–(2c), respectively. The 

first contribution in Eq. (18) is the penalization error which has been shown to decay as O(
√

ε). The second contribution 
is the discretization error which decays as O(�x2), since uε is in C1 only.

From the physical interpretation of ε as permeability and in view of the slow O(
√

ε) convergence, a first intuition would 
be to choose a very small value, say slightly larger than the machine precision, i.e. ε = 10−13. Unfortunately, the time step 
restriction (11) for our explicit time marching scheme prevents us from doing so. An apparent way out would be to treat 
the penalization term with an implicit time marching scheme. This approach has been discussed for the Burgers equation 
in [31]. In [52], an extension to the Navier–Stokes equation was presented, revealing the intimate coupling between ε and 
�t: the error saturates around ε ≈ �t . Thus, there is no gain in choosing a very small ε and a larger time step; the error is 
almost the same as if one would have chosen both of the same order of magnitude. This behavior can be understood by the 
interpretation of the penalty term as a strong damping term on the velocity in Eq. (2a). It introduces a characteristic time 
scale, which is of order ε, that has to be resolved by the time marching scheme.

The central question when using the penalization method is thus how to appropriately choose ε for a given problem.
To answer it, one may consider the Taylor–Couette flow between two coaxial cylinders. Let the cylinders have radii 

R1 = 0.5 and R2 = 1.0. The inner one rotates with an angular velocity Ω , and the outer one is fixed. The exact solution for 
the steady state is an azimuthal velocity field [53]:

uΘ(r) = −Ω
R2

1

R2
2 − R2

1

r + Ω
R2

1 R2
2

R2
2 − R2

1

1

r
. (19)

Our numerical solution is obtained using a [0, 2.5] × [0, 2.5] domain and a viscosity of ν = 0.1. A discontinuous mask 
function is used. The initial condition is taken to equal the exact solution, and the computation is stopped when the time 
derivatives of both L2 and L∞ norms are smaller than 10−4, which corresponds to a final time of around T = 1.0. This test 
case being computationally cheap, we can afford to test five resolutions, 322, 642, 1282, 2562 and 5122 with 30 values of 
ε each, distributed logarithmically equidistant in ε = [10−6, 10−1]. The time step is �t = min(10−4, ε) to keep the time 
discretization error negligible.

Fig. 2 (left) illustrates the relative error in L2 norm as a function of ε and the spatial resolution. It exhibits the coupling 
between the spatial resolution and the penalization parameter. First, one observes the 

√
ε slope predicted from theory [28]

and the saturation of the error for small ε. The behavior is consistent with the loss of the C1 regularity of the exact solution 
of the penalized problem in the limit of small ε. For each resolution, one can identify an optimal value of ε, that minimizes 
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the error. This is also consistent with [30], where the penalized Laplace and Stokes operators were analyzed analytically and 
the relation between ε and �x has been shown to be

ε ∝ �x2. (20)

In view of the connection between ε and both the spatial and temporal discretization, it is clear that the strategy of 
choosing some fixed, small value of ε is sure to give sub-optimal results. Instead, one should choose ε according to Eq. (20). 
Fig. 2 (right) illustrates the spatial convergence for four different values of ε at the coarsest resolution (322). All curves 
exhibit first- to second order convergence, but the choice of the constant of proportionality in Eq. (20) modifies the error 
offset. The smallest error is obtained for ε0 = ε(Nx = 32) = 10−3.

Although the order of convergence remains the same, we can thus tune the penalization method by carefully choosing ε0. 
Due to the action of viscosity ν , a small penalization boundary layer with a characteristic length scale of 

√
νε forms inside 

the solid, see also [29]. This boundary layer can be used to get an idea on how to choose ε. When looking at the vorticity 
in the case of the Taylor–Couette flow, one notices that this boundary layer is far from being resolved when the error is 
minimal. As a practical guideline, one should consider a coarse resolution and start with a large ε, which is decreased 
until the boundary layer in the vorticity is no longer resolved. This value is then chosen as constant of proportionality. 
The resulting value depends on the Reynolds number, and the penalization method works better when ν is small, i.e. for 
larger Re.

It should be noted that it is likely to be impossible to find the optimal value of ε in cases where no reference solution 
exists.

Due to the restriction �t < ε ∝ �x2, a first order scheme in time would in principle be sufficient. However, the Adams–
Bashforth scheme does not introduce a significant additional cost but ensures that the time discretization error is negligible 
in front of the other error contributions.

4. Fluid–structure interaction

In previous work, the penalization method has been extended to take moving rigid obstacles into account. The algorithm 
has been presented in [31], and we recall only the essential idea by considering an obstacle that undergoes pure transla-
tional motion with a velocity us . Basically, the approach consists in solving a transport equation for the mask function,

∂tχ + us · ∇χ = 0, (21)

using the same discretization as for the Navier–Stokes equation. The gradient operator being diagonal in Fourier space, this 
equation can be solved exactly. Thus, the obstacle at time tn is described by

χ
(
x, tn) = F−1(e−ik·ustF

(
χ

(
x, t0))). (22)

Using Eq. (22) the obstacle can be displaced by less than one grid point. Always using the initial mask, χ(x, t0), avoids error 
accumulation. For general us the motion can be decomposed in a sequence of one-dimensional transformations [31]. Hence, 
arbitrary motion can be simulated with this approach. In order to avoid Gibbs oscillations, the discontinuous χ -function can 
be smoothed by solving a few steps of a diffusion equation prior to the simulation.

4.1. Penalization method for flexible obstacles

For fully flexible obstacles the approach of shifting the mask in Fourier space is no longer applicable, because the ve-
locity field us in Eq. (21) is no longer constant. On the other hand, the discontinuous mask function cannot be translated 
in physical space by less than one grid point, and this jerky motion produces spurious oscillations in the hydrodynamic 
forces, as shown in [31]. One could solve the transport equation (21) with a different discretization scheme, but this would 
introduce additional difficulties such as numerical diffusion. A way out of this dilemma is to make use of the smoothing 
layer that has already been introduced.

In the present work, we use an analytical expression for the mask function, that can easily be resampled on the Eulerian 
grid. To this end we introduce a smoothed Heaviside function

H(x) = 1

2

[
erf

(
t − x

δ

)
+ erf

(
t + x

δ

)]
(23)

where

δ = csm �x max

(
∂ H

∂x

)
= csm �x√

π

[
exp(−4) − 1

]
.

The parameter csm defines the thickness of the smoothing layer in mesh widths. This particular choice for H(x) is motivated 
by the fact that it provides a good compromise between compact support in Fourier and physical space.

To validate this approach we use the setup proposed by Wan et al. [54]. It consists of a circular cylinder of radius 
R = 0.05 immersed in a channel of length L = 2.2 and height H = 0.41. The coordinate of the cylinder center is given by
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Fig. 3. Hydrodynamic forces acting on an oscillating cylinder in a channel. Top: snapshot of the vorticity field. Bottom: lift (left) and drag force (right). Solid 
lines are present results (1024 × 284: �, 2048 × 568: �) and results of Wan et al. [54] are represented by dashed lines.

Fig. 4. Illustration of the solid model used in the present work. The beam is clamped with respect to the relative coordinate system, which is translated by 
x0 and rotated by α.

xc(t) =
(

x0 + A sin(2π f0t)
y0

)
where x0 = 1.1, y0 = 0.2, A = 0.25 and f0 = 0.25. The penalization parameter is ε = 10−3 at the coarse resolution (1024 ×
284) and ε = 2.5 ·10−4 at the finer one (2048 ×568). The smoothing parameter is csm = 2. The reference computation in [54]
is computed with an FEM solver using a body-fitted grid in a moving reference frame. Fig. 3 illustrates the hydrodynamic 
forces acting on the cylinder. Good agreement can be observed. Quantitatively, the difference for the drag is 4.58% and 2.57%, 
and for the lift we find 12.05% and 7.04% for the coarse and fine resolution, respectively. The difference is computed by the 
L2 norm of the time series of the difference, normalized by the L2 norm of the reference signal. We can thus conclude that 
the smoothed mask function yields reasonable results.

4.2. Solid model

4.2.1. Model equations
The focus in the present work lies on the simulation of fluid–structure interaction. Thus, a suitable solid model is 

required. To this end, we introduce a one-dimensional model equation instead of solving the two-dimensional elastic con-
tinuum equations. We will show that this model performs well compared to the reference solution obtained by Turek et al. 
[18], while being computationally cheap and reasonably easy to implement.

Our model consists in a beam, which is a thin inextensible structure made out of linear elastic material. A key aspect 
is that we must account for large deflections and cannot use geometrically linear models, as their deflections have to be 
comparable to the beam thickness and thus to be very small. It is assumed that the beam is clamped at its leading edge, 
while the trailing one is free. In view of our application to biolocomotion, an arbitrary motion at the leading edge must 
be considered. This imposed motion is described by the position vector x0(t) and the rotation angle α(t), that are both 
arbitrary functions of time, see Fig. 4. The beam is parametrized by its local deflection angle Θ and its longitudinal force T , 
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which are both functions of the arclength coordinate s ∈ (0, 1) and time. The model equation is the extension of the one 
used in [55]. It is derived by considering force- and torque balance on a deformed beam element, yielding

∂2T

∂s2
− T

(
∂Θ

∂s

)2

= −[p]± ∂Θ

∂s
− 2η

∂Θ

∂s

∂3Θ

∂s3
− η

(
∂2Θ

∂s2

)2

− μ(Θ̇ + α̇)2 − ∂[τ ]±
∂s

(24a)

μΘ̈ + μα̈ + ∂[p]±
∂s

= −η
∂4Θ

∂s4
+

(
T + η

(
∂Θ

∂s

)2)
∂2Θ

∂s2
+ 2

∂T

∂s

∂Θ

∂s
+ [τ ]± ∂Θ

∂s
, (24b)

where

μ = h�s

�� f
η = Eh3

12�3� f u2∞
(25)

are the dimensionless density and rigidity, respectively. The external forces acting on the beam are the pressure jump 
across the beam [p]± and the viscous tensions [τ ]± on the surface. The Young’s modulus, thickness, length and density are 
denoted by E, h, �, �s , and the fluid density � f and the free-stream velocity u∞ are used for normalization. Dots denote 
time derivatives. Note that unlike in our earlier work [56], Eqs. (24a)–(24b) account for the viscous tensions. The set of PDEs
(24a)–(24b) has to be completed with the clamped-free boundary conditions:

Θ = 0

∂T

∂s
+ η

∂2Θ

∂s2

∂Θ

∂s
= μ(ẍ0 cosα + ÿ0 sinα + g sinα) − [τ ]±

T
∂Θ

∂s
− η

∂3Θ

∂s3
= μ( ÿ0 cosα − ẍ0 sinα + g cosα) + [p]±

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
at s = 0 (26a)

T = 0

∂Θ

∂s
= 0

∂2Θ

∂s2
= 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
at s = 1 (26b)

where ẍ0 and ÿ0 are the components of the position vector x0 and g is the gravity, which acts always in negative y
direction. From the local deflection angle Θ , the global deflection line xs and velocity us can be obtained by computing:

xc(s) = x0 +
(

cosα
∫ s

0 cosΘds − sinα
∫ s

0 sinΘds

cosα
∫ s

0 sinΘds + sinα
∫ s

0 cosΘds

)
(27a)

us(s) = ẋ0 +
(

cosα(
∫ s

0 −Θ̇ sinΘds − α̇
∫ s

0 sinΘds) − sinα(
∫ s

0 −Θ̇ sinΘds + α̇
∫ s

0 cosΘds)

cosα(
∫ s

0 −Θ̇ sinΘds + α̇
∫ s

0 cosΘds) + sinα(
∫ s

0 −Θ̇ sinΘds − α̇
∫ s

0 sinΘds)

)
. (27b)

4.2.2. Numerical solution
The set of Eqs. (24a)–(24b), (26a)–(26b), (27a)–(27b) are solved numerically using finite difference approximations of 

the differential operators. Special care has to be devoted to time integration. First, the equations are stiff and require an 
implicit time marching scheme. Second, the eigenvalues of the discrete (linearized) operator lie on the imaginary axis, which 
happens to be the stability limit of the second order Crank–Nicolson scheme which was used in previous works [56]. Hence 
we employ a second order backward differentiation scheme with variable time steps [57]:

wn+1 = (1 + ξ)2

1 + 2ξ
wn − ξ2

1 + 2ξ
wn−1 + 1 + ξ

1 + 2ξ
�tn f

(
wn+1) (28)

where ξ = �tn/�tn−1. The vector w = (Θ Θ̇) has been introduced to rewrite Eq. (24b) as a first order system and f (wn+1)

is the right-hand side of this first order system. All terms are treated implicitly and the inextensibility constraint (24a) is 
fulfilled at the new time level. The resulting non-linear system is solved using Newton–Raphson iterations, with a relative 
error below 10−10 as stopping criterion. The Jacobian is computed analytically and hard-coded in the solver, speeding 
up the computation. Typically, three iterations are performed until the stopping criterion is reached. The time step �t is 
determined by the fluid.

4.2.3. Validation
Our numerical algorithm is verified to be of second order accuracy with respect to both �x and �t , by comparing with 

the solution on the finest grid. To study the model error, we compare our solver with the reference data for test case 
CSM3 proposed in [18]. This test considers a beam without surrounding fluid and without imposed motion. The motion is 



T. Engels et al. / Journal of Computational Physics 281 (2015) 96–115 105
Table 1
Results of the CSM3 test. The present results are obtained with the non-linear beam equation, while the reference solution is obtained by solving a full 2D 
continuum model.

Frequency x-displacement [×10−3] y-displacement [×10−3]
mean amplitude mean amplitude

Turek et al. [18] 1.0995 −14.3051 14.3057 −63.6077 65.1607
Present results 1.1012 −14.4442 14.4442 −63.3999 65.2898

driven by gravity. The normalized parameters (25) characterizing the solid are η = 2.592 · 10−2 and μ = 5.714 · 10−2 and 
the normalized gravity is g = 0.7. We should point out that Young’s modulus has to be corrected when passing to a plane 
stress state, E = E0/(1 − n2), where E0 is the usual Young’s modulus and n is the Poisson ratio.

The results of the comparison are summarized in Table 1. The numerical resolution is sufficiently high for the model error 
to become dominant. Although our model is only one-dimensional, it agrees reasonably well with the reference solution.

4.3. Fluid–solid coupling

In order to couple the previously described fluid and solid models, two distinct tasks have to be performed. First, the 
fluid solver requires the current geometry of the problem, hence the mask function χ(t) has to be constructed from the 
current deflection line of the solid. Second, the fluid forces acting on the solid and determining its dynamics must be 
transferred from the Eulerian description of the fluid to the Lagrangian description of the solid. This requires interpolation.

The algorithm used to construct χ(x, t) and us(x, t) can be found in Appendix A.
To transfer the fluid forces we employ a regularized delta function for the Eulerian–Lagrangian transfer. Namely, we use 

the kernel proposed by Yang et al. [58]:

δ(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3
8 + π

32 − r2

4 |r| ≤ 0.5
1
4 + 1−|r|

8

√−2 + 8|r| − 4r2 − 1
8 arcsin(

√
2(|r| − 1)) 0.5 ≤ |r| ≤ 1.5

17
16 − π

64 − 3|r|
4 + r2

8 + |r|−2
16

√
16|r| − 4r2 − 14 + 1

16 arcsin(
√

2(|r| − 2)) 1.5 ≤ |r| ≤ 2.5

0 2.5 ≤ |r|,
where r = x/�x. This kernel is designed to reduce spurious oscillations in the interpolated values, which is desirable for 
fluid–structure interaction. The two-dimensional function is constructed as tensor product of two functions of one variable,

δ(x) = δ

(
x

�x

)
δ

(
y

�y

)
,

and the interpolated pressure on the interface then reads

p(x) =
∑

j

∑
i

pi jδ(xij − x). (29)

The same technique is used to interpolate viscous tensions on the surface.
With the mask construction and the load transfer technique all the necessary tools to couple fluid and structure are 

available. In the present work we are concerned with solid materials that have a higher density than the surrounding fluid. 
Thus, we do not encounter the specific stability problems that arise if the solid density is too close to or below the fluid 
density. We can thus enjoy a fast sequential staggered coupling scheme that would be unstable for light structures due to 
the artificial added mass instability [14]. The algorithm used here reads

1. At time tn , compute un and pn from the given the vorticity field ωn .
2. Construct the mask function χn and the solid velocity field un

s from the beam state at tn .
3. Advance the fluid in time by solving Eq. (10) using the adaptive second order Adams–Bashforth scheme.
4. From ωn+1, compute the pressure pn+1 on the surface of the beam given by its state at tn .
5. Using the interpolation (29), transfer the Eulerian pressure fields pn, pn+1 to the Lagrangian surface points on the beam.
6. Advance the beam in time by solving Eq. (28).
7. Set tn → tn+1 and go to 1.

Because we use two different time marching schemes for the fluid and the solid, the resulting algorithm is only first order 
accurate. It could be improved by performing iterations. Yet, because of the influence of the penalization parameter ε, we 
can content ourselves with this algorithm.
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4.4. Energy budget

A first physically relevant test is whether our coupled solver respects energy conservation. To this end, we consider a 
beam of unit length in a domain Ω = [0, 4] × [0, 4]. The resolution is nx × ny = 2048 × 2048 and the penalty parameter is 
ε = 10−4. The test case is that of a beam immersed in a fluid that bends down due to the action of gravity. We test two 
Reynolds numbers, Re = 200 and 2000. As stated previously, the penalization method requires very small ε in the limit of 
small Re. Thus, we do not release the beam in a fluid at rest, because the Reynolds number at the beginning of the motion 
would be zero. Instead, a mean flow is forced and given some time to develop, before gravity is softly turned on at t = 2.5. 
This way, one can avoid dealing with an impulsively started motion.

The energy contained in the beam can be computed as the sum of the elastic, kinetic and potential energy:

Es
solid = Es

flex + Es
kin + Es

pot (30)

Es
flex = 1

2

1∫
0

ηΘ2
s ds (31)

Es
kin = 1

2
μ

1∫
0

us · us ds (32)

Es
pot = μg

1∫
0

y ds. (33)

The energy budget for the penalized Navier–Stokes equation can be obtained by dot-multiplying Eq. (2a) and integrating 
over the computational domain Ω = T

2:

d

dt
E f

kin = − 1

Re

∫
Ω

|∇u|2dΩ −
∫
Ω

χ

ε
(u − us) · udΩ

Ė f
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Ω
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−
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Ω

χ

ε
(u − u∞ − us)

2dΩ

Ė f
kin = Ė f

diss + Ė f
solid + Ė f

mean + Ė f
porous (34)

where the penalization term has been split into three contributions: the energy that enters the fluid through the solid 
motion Ė f

solid and the mean flow Ė f
mean, and the energy that is dissipated in the penalization term Ė f

porous, which can be 
interpreted as “porous dissipation”.

For our numerical method, we require Ė f
solid = Ė s

solid, i.e. the coupling should not introduce artificial energy. Fig. 5 il-
lustrates a snapshot of the vorticity field (left) and the time series of the different terms in Eq. (34). One can observe 
good agreement between Ė f

solid and Ė s
solid, the relative L2 difference is about 7%. The remaining difference is attributed 

to finite-size effects in the model, since the underlying solid model is one-dimensional, but it is extended to a thin, yet 
two-dimensional structure.

4.5. Quantitative validation

To validate our numerical method quantitatively, we consider the benchmark proposed by Turek et al. [18,19]. It consists 
of three stages, one of which has already been used to evaluate the model error of the beam equation. The remaining stages 
are the CFD test, in which a rigid obstacle is considered, and the FSI test with a flexible object. For each stage, three test 
cases are proposed, and here we consider only the CFD3 and FSI3 tests.

The setup is illustrated in Fig. 6. A circular cylinder of radius R = 0.05 with an appendage of length � = 0.35 and 
thickness h = 0.02 is immersed in a channel of size Lx × L y = 2.5 × 0.41 with a parabolic velocity profile imposed at the 
inflow. The center of the cylinder is placed at (0.2, 0.2), where (0, 0) is in the bottom-left corner of the domain, which 
intentionally yields an asymmetric setup. In our approach, the channel walls as well as the obstacle are modeled with 
the penalization method. The walls have the same thickness as the beam structure. The inflow condition is met using the 
velocity sponge approach, see Eq. (17), which is imposed in Ωsp .

We should note that in this setup, the distance between the object and the inflow is smaller than the upstream influence 
of the object itself. Thus, this configuration cannot be reproduced considering a long channel with a developed laminar flow, 
as it would be done experimentally.
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Fig. 5. Energy test case for the Reynolds numbers 200 (top) and 2000 (bottom). Left column: Snapshot of the flow field, shown is vorticity with super-
imposed white streamlines. Right column: energy budget according to Eq. (34). The beam remains fixed until t = 2. The startup singularity is due to the 
impulsively started flow. The curves for Ė f

solid and Ė s
solid show good agreement in both cases, indicating a good conservation of energy.

Fig. 6. Setup for the benchmark proposed by Turek et al. [18]. A cylinder with an attached appendage is immersed in a channel configuration. The velocity 
sponge technique is used to impose a parabolic velocity profile in Ωsp . The appendage is either rigid (CFD test) or flexible (FSI test).
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Table 2
Results of the CFD3 test with a fixed obstacle.

Resolution ε Lift Drag Frequency

Max Min Max Min

1300 × 288 4 · 10−3 423.66 −0.53% −500.44 11.28% 512.62 15.18% 498.44 14.89% 4.46 1.47%
2600 × 576 1 · 10−3 392.47 −7.85% −464.57 3.31% 475.70 6.88% 463.80 6.91% 4.41 0.33%
5200 × 1152 2.5 · 10−4 402.00 −5.62% −452.64 0.65% 453.42 1.88% 442.14 1.92% 4.37 −0.58%
10400 × 2304 6.3 · 10−5 405.46 −4.80% −446.48 −0.72% 447.29 0.50% 436.15 0.53% 4.36 −0.81%

Reference 425.92 −449.70 445.07 433.83 4.40

Fig. 7. Results for the CFD3 test with rigid appendage. Vorticity field with stream lines and the obstacle (top). Bottom: time series of the lift (left) and drag 
force (right) on the obstacle. Present results are represented by blue solid lines and the reference solution [18] by the dashed black line.

4.5.1. CFD test
First we consider the CFD3 test, where the obstacle remains fixed. The Reynolds number based on the length of the 

obstacle � is Re = u∞�/ν = 700. The test is designed such that the flow reaches a periodic state which is independent of 
the initial condition. As the channel walls are modeled with the penalization method, they cover a finite area, which has to 
be taken into account when forcing the mean velocity. To force unit mean flow in the channel, u∞ is corrected using the 
channel walls height hchan, thus u∞ = 1 − 2hchan/L y .

When starting with a uniform flow as initial condition, the developing wake behind the obstacle requires a considerable 
amount of time to destabilize and to reach the final periodic state. For this reason, all present simulations are started 
with the flow field at the end of the destabilization phase. The quantities for comparison are the lift and drag force in 
the developed periodic regime and the fundamental frequency of the lift force, which corresponds to the lowest significant 
frequency present in the spectrum. The forces are represented by their minimum and maximum values during one period. 
Due to transient effects, the min/max values are averaged over the last periods, and simulations are run long enough for the 
width of the 95% confidence interval to be smaller than 0.1% of the predicted value. This results in a computational time of 
about 30 period times.

In Table 2, the present results for four levels of resolution are compared with the reference solution presented in [18]. 
The general accuracy of our method is satisfying, even though the maximum value of the lift force presents some noticeable 
difference with respect to the reference solution. In addition to the max/min values, the shape of the lift/drag curves are 
compared in Fig. 7, bottom. It can be observed that the curves are very similar. The drag curve exhibits an offset which 
is related to the smoothing layer in the χ -function, which can be interpreted as surface roughness. Due to the smoothing 
layer, our method generally overpredicts the drag force. On the other hand, the offset is only 0.5% of the mean value and 
thus rather small. The corresponding vorticity field during the periodic state is shown in Fig. 7, top.

4.5.2. FSI test
To conclude the quantitative validation we proceed to the FSI3 test case. Now, the appendage attached to the cylinder 

is flexible. As for the CFD3 test, some computational time can be saved by choosing a suitable initial condition. We use 
the same flow field as in the CFD3 test case, and the beam is initially at rest and undeformed. The non-dimensional 
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Table 3
Results of the FSI3 test. Present computations using four levels of resolution on the top, compared to various results from the literature. For orientation the 
average over the different publications (1)–(8), excluding the present ones, is also shown.

dy [×10−3] Fdrag F lift f0

max min max min max min

1300 × 288, ε = 4 · 10−3 36.47 −32.12 591.45 525.75 184.83 −189.29 5.89
2600 × 576, ε = 1 · 10−3 36.32 −32.98 516.73 455.39 187.83 −185.73 5.56
5200 × 1152, ε = 2.5 · 10−4 35.58 −32.59 487.87 437.93 190.50 −184.36 5.47
10 400 × 2304, ε = 6.3 · 10−5 35.63 −32.71 481.20 432.50 188.52 −181.30 5.44

(1) Turek [18] 36.37 −33.45 487.81 432.79 156.13 −151.31 5.47
(2) Schäfer [11,19] 36.73 −33.79 487.82 431.98 159.54 −155.86 5.82
(3) Rannacher [19] 35.89 −33.33 478.59 426.21 155.06 −150.34 5.42
(4) Turek [19] 36.46 −33.52 488.24 432.76 156.40 −151.40 5.47
(5) Breuer [19] 44.00 −41.00 507.00 428.00 204.90 −172.50 5.06
(6) Krafzyk [19] 36.58 −33.62 494.30 431.70 155.81 −152.19 5.50
(7) Wall [13,19] 30.45 −27.55 451.50 416.50 91.13 −86.07 5.30
(8) Bletzinger [19] 38.18 −35.08 503.02 446.78 169.76 −162.04 5.50

Average 36.75 −33.81 488.14 431.62 158.62 −150.78 5.46

Fig. 8. Results for the FSI3 test with a flexible appendage. Top: snapshot of the vorticity field with the deformed obstacle. Bottom: time series of the 
y-displacement of the trailing edge and of the drag force acting on the entire obstacle.

parameters characterizing the solid are μ = 5.7143 · 10−2 and η = 2.5915 · 10−2, cf. Eq. (25), and the Reynolds number is 
Re = u∞�/ν = 700.

As for the CFD3 test, the quantitative comparison with results from the literature is done using the max/min values 
of the respective time series. The fundamental frequency f0 is that of the y-displacement dy of the trailing edge. In the 
present work, the max/min value are obtained as stated previously for the CFD3 test, but interestingly the FSI3 test requires 
a shorter computational time to settle into its final periodic state. Here, about 25 oscillations were computed. The max/min 
values for the displacement dy , the drag and lift force and the frequency f0 for this test are presented in Table 3. The 
different methods behind the numerical results are described in the respective papers, as listed in Table 3 and in the 
overview article [18].

For the y-displacement of the trailing edge, all methods except (5) and (7) agree to within 3.9%, and the present results 
fit well into this range of results. Unless otherwise stated, differences in this section are normalized with the averaged 
result. It is remarkable that the result for dy does not significantly depend on the resolution level, as even the coarsest 
resolution yields an acceptable value. Compared to the initial computation from [18], present results differ by 0.6%.

For the drag force, the different methods are spread to a range over 7.5% of the averaged value. The drag computed 
with the present method is in excellent agreement for the two highest resolutions and again quite close to the original 
values from [18], with a difference of about 0.5%. The shapes of the time series of the displacement and the drag force are 
illustrated in Fig. 8 together with the original results presented in [18].
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Fig. 9. Setup for the wing section configuration. The flexible foils perform a sinusoidal heaving motion, and the second one is optional. The mean fluid 
flow u∞ is imposed. A mixture of a ω sponge and a u sponge is used. The ω sponge damps incoming vortices slowly, in order to minimize the upstream 
influence. Remaining vorticity is then removed by the u sponge.

Concerning the lift force, the range of results is broader and varies up to 40% for method (7), 30% for method (5) and 7.5% 
for method (8). The present method seems to overpredict the amplitude of oscillations in the lift force, and the difference 
in both max and min value is about 20% that of the average.

In conclusion we find good quantitative agreement with the results found in the literature, for the solid and fluid solver 
alone, as well as for the coupled FSI algorithm.

5. Application to insect flight

Since the present numerical method has been validated, it can now be applied to study simplified models for insect 
flight. These simulations are namely inspired by the experiments presented in [39]. The mechanical flapper considered 
therein is designed to perform heaving motion only. The wings are flexible and the resulting deflection passively imposes 
an angle of attack different from zero, which is why this configuration produces nonzero thrust.

In our two-dimensional approximation, this setup translates into a pure heaving motion of the wing section’s leading 
edge. In [39], a mechanical flapper with one wing per side has been considered, and it is thus a first step to apply our 
method to this setup. As a second step, we add a second wing section and study the interaction between the fore- and 
hindwing.

The experimental setup is intrinsically three dimensional, and the present two-dimensional simulations should be viewed 
as a preparatory study rather than reproducing the exact physics. Our method is not intrinsically limited to two dimensions, 
in fact, an extension to 3D is rather straightforward, especially since the experiment aims at studying the chordwise flexi-
bility only, which can indeed be done with our one-dimensional solid model.

For the remainder of this section, we fix the material properties of the solid to η = 5.5284 and μ = 2.8902 and the 
Reynolds number based on the unity mean flow to Re = u∞�/ν = 300, where � is the chord length, which also is unity. The 
first eigenfrequency of the beam is f0 = 3.516/2π

√
η/μ = 0.77. The mean flow is imposed to be unity, u∞ = 1. The setup 

is illustrated in Fig. 9.

5.1. One wing section

For the single wing section, we are interested in the relation between the heaving frequency f and the thrust generated 
by the wing. The foil follows the imposed motion yle,1 = y0 + y f sin(2π f t). The amplitude of the heaving motion is y f = 0.5
and y0 is half the domain size, such that the mean position is on the center line of the domain. The domain size is 
Lx × L y = 10 × 10 and the x-coordinate of the leading edge is x0 = 2.

Special care is devoted to removing the wake at the borders of the domain. First, a vorticity sponge is applied in Ωω
sp , 

according to Eq. (16). The penalization parameter here is εω
sp = 0.3, which results in a relatively weak damping. The intention 

is to allow a traveling pair of vortices to enter the sponge collectively, since it may otherwise happen that one vortex is 
destroyed before the second one enters the sponge – in this case, the induced travel velocity reduces to zero and the second 
vortex is left orphaned in the computational domain. The vorticity sponge has a thickness of two chord lengths, which is 
large enough for dipoles to enter it entirely. Since the damping is relatively weak, it is possible that some remaining vorticity 
travels through the sponge. This is avoided by placing a velocity sponge around the vorticity sponge, see Ωu

sp in Fig. 9. The 
penalization parameter here is εu

sp = 10−3, and the velocity u0 in Eq. (17) is equal to the mean velocity u∞ .
The improved wake cancellation and the nonzero mean flow are the key differences to previously published prelimi-

nary material [59]. Also, the present simulations use higher resolution, smaller penalization parameters and compute more 
strokes, which is why present results are an improvement of the results in [59]. The resolution and corresponding penaliza-
tion parameters can be found in Table 4(a).

The varying physical parameters for the study are summarized in Table 4(b). We systematically investigate the influence 
of the parameter f by simulating 13 different values, where each simulation spans N strokes.
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Table 4
Parameters for the single foil configuration.

(a) Numerical parameters for the simulations.

Level 1 Level 2 Level 3

Resolution nx × ny 768 × 768 1536 × 1536 3072 × 3072
Penalty parameter ε 10−3 2.5 · 10−4 6.25 · 10−5

(b) Physical parameters: the heaving frequency normalized by the first resonant and the number of strokes computed in each simulation.

f / f0 1.29 1.19 1.08 1.00 0.97 0.92 0.86 0.80 0.76 0.65 0.54 0.43 0.32
N 25 25 25 25 25 25 25 25 25 25 20 12 9

Fig. 10. Thrust (left) and propulsive efficiency (right) as a function of the reduced heaving frequency f / f0. Curves for resolution level 2 (dashed) and 3 
(solid). Triangles indicate the 95% confidence interval, vertical dashed line indicates the first resonant. The maximum thrust occurs at f / f0 = 0.86, which 
lies also in the region of maximum efficiency of about 12.5%.

For low frequencies, the flow exhibits a strongly periodic behavior, which is also reflected in the hydrodynamic forces. 
Therefore, fewer strokes have been computed in these cases, the number of strokes was selected with the help of the 
coarsest level computation. With increasing frequency, the flow becomes more erratic and it gets increasingly difficult to 
estimate the mean values for the hydrodynamic forces. Long time simulations at the coarsest level indicate that no strictly 
periodic state is reached. The number of strokes is thus dictated by the computational cost and limited to N = 25 strokes 
for the higher resolution runs.

The main results are illustrated in Fig. 10. For the lowest frequency, we observe that the heaving foil produces virtually 
zero thrust, which is the same for both resolutions. The thrust increases with increasing frequency, until it reaches its 
maximum between 0.8 and 0.9. It then rapidly drops for higher frequencies and reverses its sign when passing the resonant 
frequency. The fact that maximum thrust is reached below the structural resonant is consistent with the main finding from 
[39]. Contrary to the thrust force, the propulsion efficiency exhibits a broader maximum between 0.6 and 0.8, which is 
about 12.5%. The efficiency is computed as the ratio of input power, i.e. the work of the external forces [p]± and [τ ]± , and 
the output power F thrust · u∞ .

The direct comparison of the two resolutions indicates that the main source of uncertainty is the erratic nature of the 
flow rather than the discretization error.

A possible explanation for the rapid decrease in thrust beyond f / f0 = 0.86 is offered in Fig. 11. The trailing edge 
deflection angle increases with increasing frequency, and it becomes greater than 90◦ shortly before f / f0 = 0.86. The 
deflection angle for higher frequencies is appreciably greater than 90◦ , which indicates that the trailing edge actually points 
forward, which also directs fluid momentum in this direction and hence decreases the thrust.



112 T. Engels et al. / Journal of Computational Physics 281 (2015) 96–115
Fig. 11. Maximum trailing edge deflection angle (averaged over strokes) as a function of f / f0 for level 2 (dashed) and level 3 resolution (solid). Horizontal 
and vertical dashed lines mark 90◦ and the resonant frequency, respectively.

5.2. Two wing sections

It is an appealing feature of the present method that it can be extended to take several obstacles into account, a task 
that may present some extra difficulties when applying body-fitted grids to this problem. Though a detailed investigation 
is beyond the scope of this paper, we present some results for two wing sections in interaction. Thus, we place a second 
beam behind the first one, that follows the same imposed motion, but with a phase shift δ, yle,2 = y0 + y f sin(2π f t + δ). 
We fix the heaving frequency to f / f0 = 0.80, which is the last datapoint before the maximum thrust in Fig. 10.

Inspired by the paper of Usherwood and Lehmann [60], we investigate the influence of the phase shift on the wake 
structures for two values of δ, namely δ = 0.75π and δ = 1.25π . As we are interested in the wake structure, the computa-
tional domain is Lx × L y = 30 × 20 chord lengths, and the resolution is 4608 × 3072 nodes. The penalization parameter is 
ε = 6.25 · 10−5. The same sponge technique as for the single foils is applied, see Fig. 9.

In Fig. 12 (left column), the instantaneous vorticity fields for both cases are shown. They reveal that the δ = 1.25π case 
(bottom) yields a top/bottom asymmetry in the wake, as stronger dipoles are shed downwards while only little vortices are 
shed on the upper part of the wake. The time averaged vorticity field on the other hand reveals a more symmetric structure, 
indicating that the wake settles in either direction during the simulation. The time averaged vorticity in the δ = 0.75π case 
(top, right) also shows a symmetric structure, but the vorticity is overall spread less widely.

6. Conclusion and extension to three-dimensional flows

In this paper, we presented a novel approach for the numerical simulation of fluid–structure interaction. On the fluid side, 
the volume penalization method has been used for modeling the flow past moving and flexible objects, and we have shown 
that the approach of moving a smooth mask function yields good quantitative results. Compared to [31], this approach is 
more efficient and allows the simulation of flexible obstacles, but requires slightly more implementation effort. We have 
presented a one-dimensional model for thin flexible structures which allows to impose an arbitrary motion at the leading 
edge. Comparison with results from the literature confirms its validity. Its main advantage is its low computational cost and 
ease of implementation, compared to finite elements solution of actual two-dimensional continua. The fluid–solid coupling 
algorithm has been shown to respect energy conservation, i.e. it does not introduce unphysical energy to the coupled 
system. The quantitative validation with a widely-used benchmark shows good agreement and concludes the validation of 
the algorithm. Our simulations are confined to two-dimensional cases here, but the method can easily be extended to three 
dimensions. The application to simplified models for insect flight finally shows that the present method can reproduce some 
features of the experimental configuration presented in [39].

The extension of the presented method for simulating fluid–structure interaction in 3D flows is straightforward. The 
vorticity formulation can be used, but the advantage of having a scalar valued equation is lost as the vorticity becomes a 
vector valued quantity. Thus the primitive variable formulation (2a)–(2c) is typically preferred. The incompressibility of the 
velocity field can thus be imposed by applying a Riesz projector in Fourier space to the non-linear and the penalization 
terms and thus pressure is eliminated, a standard technique in the spectral community [48,47]. Denoting both terms with 
N = −ω × u − χ

ε (u − us), such a scheme reads

∂t u − 1

Re
∇2u = N − ∇ ∇ ·N

∇2

Apart from this modification the remaining parts of the described algorithm can be directly used in 3D, keeping in mind 
that the proposed solid model only allows 1D flexibility. First results of 3D FSI simulations of pitching flexible foils and will 
be presented elsewhere.



T. Engels et al. / Journal of Computational Physics 281 (2015) 96–115 113
Fig. 12. Two heaving foils in tandem, instantaneous (left) and time-averaged (right) vorticity fields. For visibility, only part of the computational domain is 
shown. The phase shift is δ = 0.75π (top) and δ = 1.25π (bottom).
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Appendix A. Construction of the χ -function for the flexible beam

The way the mask function χ is constructed is inspired by the discretization of the beam equation. A small rectangle is 
drawn between two discrete points on the beam, aligned with the angle between them. The χ -function depends then only 
on the distance normal to the center line. Gaps between two rectangles of different angle are filled with circle segments. The 
mask construction is illustrated in Fig. 13. The solid velocity field us is constant in the en-direction and linearly interpolated 
in the et -direction. To summarize, the algorithm reads

1. Given the ns center line coordinates x(i)
c = (x(i)

c , y(i)
c ) from Eq. (27a) and the local deflection angles Θ(i) .

2. For each beam segment (x(i)
c , x(i+1)

c )

(a) Determine the indices of the rectangular box B of Eulerian grid points containing the segment: B = [ixmin, ixmax] ×
[iymin, iymax] with

ixmin = floor

(
min(x(i)

c , x(i+1)
c ) − t�

�x

)
iymin = floor

(
min(y(i)

c , y(i+1)
c ) − t�

�y

)

ixmax = ceil

(
max(x(i)

c , x(i+1)
c ) + t�

�x

)
iymax = ceil

(
max(y(i)

c , y(i+1)
c ) + t�

�y

)
where t� is the thickness of the beam plus the smoothing layer.
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Fig. 13. Schematic illustration of mask generation. The width of the smoothing layer is exaggerated.

(b) For each point P in B
i. Compute the point’s coordinate in the coordinate system aligned with the beam segment, xp = npen + tpet , cf. 

Fig. 13

np = cos
(
Θ(i))xp − sin

(
Θ(i))yp

tp = sin
(
Θ(i))xp + cos

(
Θ(i))yp

ii. Set the value of χ = H(np) according to Eq. (23). If χ already has a value at this position, overwrite it if the 
new value is larger.

iii. If χ at this position is set, then set the linearly interpolated velocity us = u(i)
s + tp

�s (u(i+1)
s − u(i)

s ) here.

3. For each hinge point located between two segments, x(i)
c , fill the remaining gap with a circle segment.

In the last step, it should be noted that one cannot use full circles to fill the gaps as with increasing resolution of the beam, 
one circle may fill several gaps, resulting in wrong velocity vectors.
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