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Abstract

High resolution direct numerical simulations of rotating and flapping bumblebee
wings are presented and their aerodynamics is studied focusing on the role of
leading edge vortices and the associated helicity production. We first study the
flow generated by only one rotating bumblebee wing in circular motion with 45°
angle of attack. We then consider a model bumblebee flying in a numerical wind
tunnel, which is tethered and has rigid wings flapping with a prescribed generic
motion. The inflow condition of the wind varies from laminar to strongly tur-
bulent regimes. Massively parallel simulations show that inflow turbulence does
not significantly alter the wings’ leading edge vortex, which enhances lift
production. Finally, we focus on studying the helicity of the generated vortices
and analyze their contribution at different scales using orthogonal wavelets.
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1. Introduction

Numerical modeling of flapping insect flight receives considerable attention and is motivated
by the growing interest in miniaturization of unmanned air vehicles, since flapping wings
present a bio-inspired alternative to the fixed- and rotary-wings used in human-designed
aircraft. The force production in those two kind of fliers relies on entirely different aero-
dynamic mechanisms. Airplane wings are smooth and use airfoil shapes designed to produce
lift from an attached flow which is accelerated on the suction side. Flow separation (stall)
limits the range of angle of attack in which these airfoils are useful. By contrast, insect wings
feature sharp edges, essentially flat profile and large angles of attack. Under these conditions,
flow separation is inevitable and large amounts of vorticity are generated at the leading edge.
This vorticity forms a strong vortex which moves with the wing and detaches only at the
stroke reversals. It has been suggested that insects can capture it at early times in the fol-
lowing half-stroke to provide an additional benefit (Lehmann and Pick 2008). Some insects
clap their wings together and the subsequent opening motion creates a fluid jet which also
provides additional forces. This mechanism is known as clap-fling-sweep (Weis-Fogh 1973)
and it has recently been revisited (Kolomenskiy ef al 2011). Dragonflies and some other
species can control their four wings independently and have arranged them in a configuration
that allows aerodynamic interaction between fore- and hindwing. This interaction depends on
the phase difference in their kinematics and can contribute to force production as well
(Usherwood and Lehmann 2008, Kolomenskiy et al 2013, Minami et al 2015).

Previous research on the flow generated by flapping wings indicates the important role of
the leading edge vortex (LEV) (Ellington et al 1996, Liu et al 1998). This vortex has a conical
structure due to the three-dimensional motion of the wings. Vorticity is produced at the sharp
leading edge, and outwards velocity (from the root to the tip of the wing) develops above the
suction surface of the wing, see, e.g., (Maxworthy 1979, Kolomenskiy et al 2011, 2014).
Such alignment of the vorticity and the velocity has important consequences for the dynamics
of the vortex (Chen et al 2017). On one hand, the excess vorticity is constantly transported
into the wing tip vortex rather than being shed periodically from the leading edge
(Maxworthy 1979). On the other hand, the swirl angle is large and the vortex can burst
(Maxworthy 2007). Swirling flows are characterized by strong helicity, which is defined by
the scalar product of velocity and vorticity vectors and corresponds to their alignment or anti-
alignment. Consideration of the helicity dynamics in flows over flapping or revolving wings
can therefore bring important insights into the processes that determine the flow topology.

Helicity has received much attention in the topological fluid dynamics community to
measure the linkage and knottedness of vortex lines in the flow. For a review we refer for
instance to (Moffatt and Tsinober 1992). In the turbulence community helicity has been used
to characterize three-dimensional swirling coherent structures, which correspond to flow
regions of maximum helicity (Farge et al 2001). This local alignment or anti-alignement of
velocity and vorticity implies that the nonlinear term of the Navier—Stokes equations is
depleted and thus the nonlinear energy transfer is slowed down. This energy cascade, also
known as Kolmogorov cascade, transfers energy from larger to smaller and smaller scales
until it is eventually dissipated. Its inhibition in regions of strong helicity indicates that these
structures tend to be more stable and to persist coherently in time (Moffatt 2014). An example
for flows with maximum helicity are Beltrami flows, which correspond to eigenfunctions of
the curl operator and are hence solutions of the steady Euler equations.

To get insight into the scale distribution of helicity we decompose the velocity and
vorticity into orthogonal wavelet bases. Wavelets are localized functions in scale and space
and allow analyzing flow fields efficiently. Thus the scale-dependent helicity, introduced in
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(Yoshimatsu et al 2009), can be computed. A review on wavelet based statistical measures for
fluid and plasma turbulence can be found in (Farge and Schneider 2015).

The aim of this work is to examine the helicity dynamics in flows over model insect wings
in connection with the effects that were previously described in terms of the vorticity and the
velocity. We propose helicity as a new diagnostics to study the vortices generated by flapping
and revolving wings. Although it is often stated that the LEV is ‘helical’, its helicity, in the sense
of its proper mathematical definition, has received surprisingly little attention. It has only been
used to discuss the bursting of the LEV on a revolving wing, i.e. its transition from a simple to a
more complex topology (Jones et al 2016). This transition is reflected as a drop in the volume
integral of helicity in the LEV, but not in the generation of aerodynamic force, as such a burst
vortex still induces a locally reduced pressure. We should however stress the difference between
vortex bursting, i.e. the change from a simple to a more complex topology, and vortex shedding.
In the latter, the LEV periodically leaves the vicinity of the wing and constitutes a wake,
and consequently the aerodynamic forces oscillate, with a significantly reduced mean value
(Kolomenskiy et al 2014). Whether vortex shedding occurs or not depends, amongst others, on
the Rossby number and the wing aspect ratio (Lentink and Dickinson 2009, Lee et al 2016). In a
different context, namely the wing/wing interaction of fore- and hindwing in dragonflies, the
‘swirl” of the wake has been discussed, (Usherwood and Lehmann 2008), but swirl was therein
considered as measure for lateral impulse transport rather than the helicity as considered here.

First, we investigate a simplified configuration of an unilaterally rotating bumblebee
wing and perform high resolution numerical computations. The flow fields are studied and, in
particular, the LEV is examined. Second, we analyze data of a flapping bumblebee flying in
turbulent flow, presented in (Engels er al 2016). We use the orthogonal wavelet decom-
position of the flow field to analyze the production of helicity at different scales, which is then
quantified by the wavelet spectrum of helicity and its spatial variability.

The manuscript is organized as follows: in section 2 we describe, for reasons of self-
consistency, the bumblebee model with rigid wings and the computational set-up. The wing
kinematics and parameters can be found in the cited references. The numerical method, which
is a Fourier pseudo-spectral method with volume penalization, is briefly recalled too. The
computational results are reproducible as the ‘FIuSI’ code is open source (Engels et al 2016).
The definition of helicity, together with its spectral decomposition and the scale-dependent
helicity using orthogonal wavelets are also given. Computational results for rotating and
flapping bumblebee wings are presented and subsequently analyzed in section 3. Conclusions
of our findings are drawn in section 4.

2. Bumblebee model, numerical method and helicity

2.1. Bumblebee model

In this article, a bumblebee (Bombus terrestris), already used in previous work (Engels
et al 2016), is chosen among the variety of flying insects as typical representative for
medium-size species. Bumblebees are known to be relentless all-weather foragers (Wolf
et al 1999, Ravi et al 2013, Crall et al 2016) and thus encounter a wide range of flow
conditions from laminar to fully turbulent (Engels er al 2016, Crall et al 2016). The flow
they generate while flying remains in a range of Reynolds number which can be computed
by direct numerical simulation (DNS) using high-performance computing facilities. The
key parameters, which we use in both setups described below, of the model insect are:
wing length R = 13.2 mm, wingbeat frequency f = 152 Hz, total mass m = 175 mg,
forward flight speed u,, = 2.5ms~!, Reynolds number Re = UipCm /v = 2060, where
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Figure 1. Setup: configuration for the revolving wing (a), wing mask (b) and
bumblebee mask (c).

itgp = 8.05ms™! is the mean wingtip velocity, ¢, = A/R = 4.01 mm the mean chord

length, A = 52.96 mm? the wing surface and v = 15 x 10~°m? s~! the viscosity of air. The
planform of the wing is illustrated in figure 1(b). The wing is modeled as a rigid, flat
surface.

A different definition of the Reynolds number can be based on the mean velocity at the
radius of gyration, R, = j(; . r2c(r)dr / A = 7.6032 mm, which yields Re, = 1187. Using R,
has its root in the blade element theory (Ellington 1984), where it appears naturally, and it has
been suggested to provide a better value for comparison in the case of revolving wings, as it
reflects also the aspect ratio (Lee e al 2016). Note that the velocity at the center of wing area
can also be used as reference velocity and it may be advisable for the purpose of comparison
between different flappers (Lua et al 2014). In this paper, however, we only consider one wing
shape. As both Reynolds numbers are common, we will use both definitions.

For the rest of the article we shall only use dimensionless quantities, normalized with a
length scale L = R, a mass scale M = gfL3 (which implies that the dimensionless fluid
density is unity) and a time scale 7, which we choose depending on the setup.

2.1.1. One revolving wing: the canonical model. Prior to analyzing the complete insect
model, we focus in this part on a commonly used reduced model, which consists of a single,
revolving wing. This canonical setup is often used to study the LEV (Harbig er al 2013,
Garmann and Visbal 2014, Kolomenskiy et al 2014, Jones et al 2016, Lee et al 2016). We fix
the angle of attack to o = 45° (i.e., the feathering angle, for details see figure 1 and Engels
et al 2016). The rotation angle varies as

o) = B(re /™ + 1),

which is the same as used in previous work (Kolomenskiy et al 2014). After a transient time,
7 = 0.4, the rotation angle grows linearly in time. The wingtip velocity is ug, = ® in the
steady rotation regime since the wing length is normalized. We choose the time scale such
that the wingtip velocity is unity, thus T = 1/®. The first full rotation would thus be
completed at ¢ = 6.68[T'], but our computations are stopped at t = 6 to avoid the wing
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interacting with its own wake. As f and ¢ are equivalent, we use ¢ as it is more intuitive in
this case. The Reynolds numbers based on the terminal velocity of the wing are the same as
stated previously for the complete bumblebee, and the Rossby number is defined as
Ro = Ry /c,, (Lentink and Dickinson 2009). In our computations, Ro = 1.87. For
comparison, we also perform a viscous simulation in which we multiply the viscosity by a
faction of ten. Figure 1(a) illustrates the setup. The wing revolves around a hinge placed at the
center of a domain of size 4 x 4 x 2 wing lengths, which is discretized using
1024 x 1024 x 512 grid points.

2.1.2. Two flapping wings: the complete model. The previously described revolving setup is a
simplification, and differs in several aspects from an actual bumblebee. As the wing
kinematics in flapping flight is a periodic back-and-forth motion, each wingbeat consists of
two half strokes, usually termed up- and downstroke. In each half stroke, a new LEV is
created and shed as a vortex puff at the stroke reversal. Describing the precise wingbeat
kinematics of insects is beyond the scope of this article, as it depends on species, flight
situation and varies between individuals. The wingbeat motion is essentially parallel to the
ground in hovering flight, while this stroke plane is more inclined in forward flight. In
hovering flight, up- and downstroke are more symmetric than they are in forward flight,
which is the case we consider here. The incoming mean flow, which in our simulations
accounts for the insects forward flight velocity (Galilean change of reference frame) acts
differently on the wing during the half-strokes. Nonetheless, in each half stroke, a LEV is
visible, as will be discussed later.

Our simulations take place in a 6R x 4R X 4R large, numerical wind tunnel, which we
resolve with 1152 x 768 x 768 grid points. The insect is tethered—the imposed mean flow
accounts for its velocity; its wingbeat kinematics are prescribed. Contrarily to the revolving
wing case, we now use the wingbeat duration to normalize time, 7 = 1/f, as this is more
natural in the flapping configuration.

To model atmospheric turbulence, we use precomputed homogeneous isotropic
turbulence (HIT) as turbulent inflow. The resulting turbulent velocity fluctuations can be
added to the laminar inflow in a layer upstream of the insect model. HIT is characterized by
the turbulent kinetic energy, the integral length scale and its Reynolds number. We vary the
turbulence intensity, Tu = u,../u, defined as the root mean square of velocity fluctuations
normalized to flight velocity, by altering the energy content of the turbulent perturbations
superimposed to the mean flow. The entire procedure allows us to study insect flight from
laminar to fully-developed turbulent flow regimes. More details on this approach can be
found in (Engels et al 2016).

2.2. Numerical method

Numerical simulations of the flow generated by insects have to face two major challenges.
First, as insects fly by flapping their wings, the geometry of the problem is complicated and
varies in time, implying that the no-slip boundary condition for the Navier—Stokes equation
has to be imposed on a complex fluid—solid interface. Second, many insects can be
typically characterized by Reynolds numbers in the intermediate regime (Lissaman 1983,
Ellington 1999), i.e., Re = O(103). In this Reynolds number regime, common simplifications,
such as the Stokes or inviscid approximations, are essentially nullified, leaving us with the full
nonlinear unsteady problem. To cope with these challenges, our numerical method combines
the volume penalization method (Angot et al 1999) with a Fourier pseudospectral
discretization (Schneider 2005, Kolomenskiy and Schneider 2009), for which we developed
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an open-source computational environment, available on Github’ (Engels er al 2016). The
code solves the incompressible, penalized Navier—Stokes equations

(Xgpw)
8,u+w><u:—VH+1/V2u—i(u—u&)— 1V>< P )
C, Cyp V2
penalization sponge
V-u=0, 2)
ulx,t=0)=uyx) xeQ,t>0, 3)

where the mask function  (x, #) is unity inside the insect and zero otherwise and C, is the
penalization constant. The last term is a vorticity damping term used to gradually damp
vortices and alleviate the periodicity inherent to the Fourier discretization. The role of this
sponge is to relaminarize the (upwind) flow as does the honeycomb in a windtunnel. Details
on how the x function and the solid body velocity field u, are constructed can be found in
(Engels et al 2016), along with a precise description of the insect model and detailed
validation tests. We use our code only to compute DNS without additional turbulence
modeling, and verify via grid convergence studies that all spatial and temporal scales are
resolved. The penalization parameter is set to C, = 5.66 x 10~#, and to determine C,asa
function of the other parameters in the simulations, the relation K,, = \/Z/—C,] / Ax = 0.074 is
used (Engels et al 2016). This value of K, is used in all reported simulations. A sponge layer
with a thickness of 32 grid points and a damping constant Cy, = 0.1 is used to damp the
vorticity at the borders of the domain. For comparison, a second simulation is performed
increasing the viscosity by a factor of ten, while keeping all other parameters constant. The
accompanying paper (Engels et al 2016) contains more details on the method, as well as a
large variety of validation tests.

2.3. Helicity, helicity spectra and scale-dependent helicity

Helicity is a quantity introduced by Betchov (1961), important to study the dynamics of
turbulent flows. In (Moreau 1961, Moffatt 1969) it was shown that energy and helicity are
two conserved quantities of the incompressible Euler equations. For a comprehensive review
on helicity we refer to (Moffatt and Tsinober 1992). Considering the velocity field # and the
corresponding vorticity w = V X u, the kinetic helicity, H (x) = u - w, can be defined, see,
e.g., (Moreau 1961, Moffatt 1969). The helicity yields a measure of the geometrical statistics
of a turbulent flow and allows us to quantify its chirality. It changes sign when applying a
mirror symmetry to the reference frame (transforming it from left to right handed). Integrating
the helicity over space and dividing it by the volume one obtains the mean heli-
city (H) = (u - w).
The relative helicity

ey = —21 “

lee] el

corresponds to the cosine of the angle between the velocity and the vorticity at each spatial
position. The range of & thus lies between —1 and +1, corresponding to anti-alignment and
alignment of the velocity and the vorticity vector, respectively.

7 htps://github.com /pseudospectators /FLUST.
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2.3.1. Energy and helicity balance equation. Similar to the dissipation of energy (in the
absence of forcing), d;(E) = —2v(Z) where (E) = (|u|*)/2 and (Z) = (|w|*)/2 are
respectively the mean energy and enstrophy, mean helicity satisfies a balance equation,

d(H) = —2v(H,), ®)

where (H,) = (w - (V X w)) is the mean helicity of vorticity (also called superhelicity)
assuming absence of helical forcing. In viscous flows, helicity is generated and dissipated,
while in the inviscid case (¥ = 0) the Euler equations conserve the mean kinetic helicity.
Contrary to energy neither helicity of velocity nor helicity of vorticity are positive definite
quantities. The point-wise helicity H(x, r) of velocity satisfies the equation (Kurien
et al 2004),

OH+u-VH = -V - (wp) + %V (wlu?) + v(V2H — 2(VuVw)). 6)

This shows that for the helicity dynamics both the nonlinear and the viscous terms locally
play a role, either in enhancing or diminishing the helicity.

2.3.2. Energy and helicity spectrum. Computing the Fourier transform of the velocity and the
vorticity, denoted by =, the isotropic energy and helicity spectra can be defined,

E(k) = % Yol Hk)= ) ak) - (k). (7
k=|k| k=|k|

Note that H(k) is also real valued, but a signed quantity, and by construction we have
YusoE(k) = E and 35, H(k) = (H) which justifies that E(k) and H(k) are called the
spectral density of energy and helicity, respectively. Applying the Cauchy—Schwarz
inequality, it follows that |H (k)| < 2kE (k), which motivates the introduction of the relative
helicity spectrum |H (k)|/(2kE (k)) < 1. In (Kurien et al 2004) it has been shown to fall off
linearly in wave-number for large k, restoring thus the mirror symmetry of the flow at small
scales in the case of isotropic turbulence.

2.3.3. Scale-dependent energy and helicity. The vorticity and velocity field can be
decomposed into an orthogonal wavelet series, i.e. for the velocity we have

u=73 > i i, (),
pooi

where j is the scale index, p the direction index and i is the position vector. The coefficients
i, ;; = (u, 1) are then called the wavelet transform of u, where 1 is the wavelet. Orthogonal
wavelets typically do not posses a closed-from expression, but they are rather defined in terms
of quadrature-mirror filters. The contributions at scale j can be obtained (for details see, e.g.,
Farge and Schneider 2015) by summing over all scales and directions for a given scale j:

1

wi(x) = 3> i, ()
1

which corresponds essentially to bandpass filtering since all other scales are set to zero. For
the vorticity the above decomposition can be applied analogously. The scale-dependent
energy can thus be defined as

1
Ex) = — u(x) - u;(x) ®)
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and integrating over x yields the mean energy (E;) at scale 27/, which is called energy
scalogram. Summing (E;) over scale we obtain the total energy E = > (Ep)-
Analoguously the scale-dependent helicity can be defined as

H;(x) = u;(x) - w;(x) ®

which was introduced in (Yoshimatsu et al 2009) in the context of isotropic turbulence. The
scale-dependent helicity preserves Galilean invariance, though the kinetic helicity itself does
not. Integrating H; over x yields the mean helicity (H;) at scale 27/, which we call helicity
scalogram. The corresponding mean helicity is obtained by summing (H;) over scale,
H = Zj(hg), due to the orthogonality of the wavelet decomposition.

The scale-dependent relative helicity can be defined correspondingly as

H;
) = — (10)
|uj| |wj|
and can be used to analyze the probability distribution of the cosine of the alignment angle
(Yoshimatsu et al 2009).
The scale 27/ can be related to the wavenumber k; as

k= k2, (1)

where k,;, = fo > k|1,71(k)|dk / fo = |1$(k)|dk is the centroid wavenumber of the chosen wavelet
(ky = 0.77 for the Coiflet 12 used here). Thus the scale-dependent energy and helicity can be
directly related to their corresponding Fourier spectra.

The wavelet energy spectrum can be obtained using the scalogram and equation (11),

1

Eo) = o
J

(Ej), (12)
where Ak; = (kj+1 — k;) In 2 (Meneveau 1991, Addison 2002). It is thus directly related to
the Fourier energy spectrum and yields a smoothed version (Meneveau 1991, Farge 1992).
The orthogonality of the wavelets with respect to scale and direction guarantees that the total
energy is obtained by direct summation, E = =, E (k)).
The wavelet helicity spectrum can then be obtained likewise
~ 1
H (k) = —(H,;), 13
(k;) A kj< ;) (13)
and again summation over j yields the total mean helicity. We anticipate that the wavelet
helicity spectrum is a smoothed version of the Fourier helicity spectrum.
The spatial variability of the wavelet energy and helicity spectra at a given wavenumber
k; can be quantified by the standard deviation, defined as

L

1
5 Akjw(u,- w2 — (B, olH] = —— (@ - w)*) — (H). (14)

E] =
715 20k,

Thus the flow intermittency can be quantified. This is not possible using Fourier spectra as all
spatial information is lost. The spatial variability of the energy spectrum can be related to the
scale-dependent flatness, defined as the ratio of the fourth- to the second-order moment of the
scale dependent velocity, as discussed, e.g., in (Farge and Schneider 2015). Increasing
flatness values for decreasing scale, i.e., values larger than three which are obtained for a
Gaussian distribution, are attributed to the flow intermittency.
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3. Numerical results

The results in this section are all presented in dimensionless form, using the winglength R, the
mass scale ng3 (therefore the dimensionless fluid density is unity) and a time scale 7. The
latter depends on the context: in the revolving wing, we set ugp, to 1 and thus T = R/ugp,
while in the bumblebee setup the cycle duration is a more convenient parameter for
normalization.

3.1. Flow generated by a revolving bumblebee wing

This section deals with a flow generated by a bumblebee wing which steadily revolves around
a hinge point with a constant angle of attack, see figure 1(a). The setup is inspired by
experimental contributions considering revolving wings of either rectangular (Jones
et al 2016) or insect-inspired shape (Pick and Lehmann 2009). In particular, (Jones
et al 2016) focuses on the bursting of the LEV, i.e. its transition from simple to complex
topology. The authors find that the bursting does not have an impact on the aerodynamic
force. The vortex can burst but still remains attached to the wing, i.e., there is no LEV
separation, and helicity can be used to characterize this bursting.

We first visualize, in figure 2, the helicity H (x) and vorticity magnitude |w(x)|, at three
different instants, for two different flows, corresponding to Re = 206 and 2060, respectively.
For both flows the wing motion starts from rest in a quiescent fluid and a vortex is formed.

The first time instant, ¢ = 36° (top row), corresponds to the early phase of steady
rotation. In the left part of figure 2, the simulation with Re = 206 is visualized and the right
part corresponds to the Re = 2060 case, which is the Reynolds number of the bumblebee. In
both simulations, large amounts of vorticity are created at the leading edge, where the flow
separates due to the elevated angle of attack. Thus, in both cases, an LEV is formed, but the
quantitative scale for vorticity is reduced in the viscous case. A tip vortex forms as well in
both cases.

At the same time, the visualization of kinetic helicity show that virtually no helicity is
generated at the leading edge, even though large amounts of vorticity are available. This
indicates the lack of spanwise flow at the leading edge. The axial flow seems to develop
further away form the leading edge, which is also where figure 2 shows positive helicity,
again at different magnitudes for the two Reynolds numbers. In the higher Reynolds number
case, the region of positive helicity is more strongly confined and marks a distinct vortex core.
In both cases, the wing tip vortex features negative helicity. The topological reconnection of
the LEV and the tip vortex contains a curious transition from the positive helicity in the LEV
core to the overall negative helicity in the wing tip vortex.

The outwards axial flow in the LEV is driven by the centrifugal force and the axial
pressure gradient produced the conical shape of the vortex. The axial flow in the wing tip
vortex is created by entrainment of the fluid behind the moving wing. Consequently, the
helicity changes sign near the wing tip.

Later on, at ¢ = 320° (bottom row), the differences in the vorticity fields of the two cases
become quite remarkable, as the higher Reynolds number case develops much finer flow
features near the wing tip, which are inhibited by the viscosity in the other case. It is also
noted that a coherent LEV is visually less easily defined in the low viscosity case. The
visualization of kinetic helicity H (x) = u - w in figure 2 looks qualitatively similar to the
vorticity magnitude regarding the appearance of fine structures. The tip vortex is helical with
a negative value of H, while the region near the root until midspan features positive values of
H. In the high Reynolds case, a strongly helical LEV is visible at ¢ = 75°, which becomes

9
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Figure 2. Flows generated by a rotating wing at two different Reynolds numbers,
Re = 206 (left) and 2060 (right), visualized by their helicity H (x) and vorticity
magnitude |w(x)| at three rotation angles ¢ (rows). The view is rotated such that the
observer looks in the direction of the wing normal. The flow topology becomes more
complex when the Reynolds number increases. Essential features, such as leading edge
and tip vortices, are observed in both cases, but remain stable at Re = 206 and develop
strong instabilities at Re = 2060. All quantities are dimensionless, i.e. helicity is given
in[L/T?] and vorticity magnitude in [1/7T]. Red dashed lines correspond to positions of

2D slices shown in figure 4.

incoherent towards the tip. At ¢ = 320°, more than half of the wing features an incoherent,
burst LEV. We note at either Reynolds number that no vortex shedding occurs, meaning that

the LEV remains attached to the wing.

This LEV bursting becomes more clearly visible when integrating the helicity density

over a control volume above the suction side of the wing, where the LEV is found. This value

is shown in figure 3 (top). From vanishing helicity due to the quiescent initial condition, the

integral value H,, = ///Q H (x)dV follows a qualitatively different evolution for the two
top



Fluid Dyn. Res. 50 (2018) 011419 T Engels et al

0.1 T T T T

T T
N integration volume Re=2060
= Re=206
& 005 =1
T
g
S 1

Ry
/) Re=206, lift

0.05 Re=2060, lift
= = = Re=206, drag

Gga = = = Re=2060, drag|

1 1 1 1 1 1 1
45 90 135 180 225 270 315
o]

Figure 3. Evolution of helicity, lift and drag as a function of the rotation angle ¢ for the
revolving wing at Re = 206 and 2060. Top part shows integral helicity
Hy,p = /fo H(x)dV, where Qy, = [-0.35, +0.15] x [0, 1] x [0, 1] is a cubic
top

control volume on the top surface (suction side) of the wing, as shown in the inset.
Bottom part shows the aerodynamic force, split into lift (in the z-direction of the
laboratory system) and drag (the magnitude of the x- and y component). All quantities
are dimensionless, i.e. F is given in [ML/T?] and Hyyp in [L*/T2.

Reynolds numbers considered. In the viscous case, H,, is negative throughout the simulation
and builds up until around ¢ = 180°, remaining constant around —0.08 afterwards. By
contrast, the high Reynolds number flow first builds up positive H until a maximum is
reached at ¢ = 81°, then rapidly drops to a constant, negative value very close to the viscous
case. The breakdown of positive helicity is a consequence of vortex bursting.

As emphasized in (Jones et al 2016), the consequences for the force production are
marginal. Figure 3 (bottom) shows the lift and drag component of the aerodynamic force,
which is computed as F = J; , x@ — uy) / C,dV (Angot et al 1999, Engels et al 2016). Their
evolution with the rotation angle is qualitatively similar, and an almost steady force is
produced after ¢ = 90°, with only small fluctuations in the higher Reynolds number case.
The qualitatively very different behavior in Hy,, is thus not reflected in the force production.
Interestingly, though we varied the Reynolds number by a factor of ten, the lift force changes
only by 16%, but the viscous case produces quantitatively more drag than lift, which is the
opposite of the higher Reynolds number case.

Figure 4 displays two-dimensional sectional plots of kinetic helicity, axial flow and axial
vorticity at three time rotation angles for three different spanwise positions. At ¢ = 36°, we
observe the formation of a conical LEV core above the suction side of the wing at all three
spanwise locations. Large positive spanwise vorticity in the core is collocated with large
outwards spanwise velocity, yielding large positive helicity density. In the LEV feeding sheet,
however, the helicity is already changing sign from positive over the proximal part to
negative over the distal part of the wing. This may be an early sign of the developing
breakdown instability. At ¢ = 74°, the proximal part of the wing still supports a compact
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Figure 4. Flow around a rotating wing, Re = 2060. Figure shows two-dimensional
slices of helicity (top box), spanwise velocity (middle box) and spanwise vorticity
(bottom box). Slices are at three different spanwise positions, y/R = 0.25, 0.50, 0.75
(rows, visualized by insets in top part) and rotation angles ¢ = 36°, 74°, 320°
(columns). All quantities are dimensionless, i.e. helicity is given in [L/T?], velocity in
[L/T] and vorticity in [1/T].
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Figure 5. Helicity H' = fo H dx®dz™, which is the integral of helicity H (x) in
slices normal to the wing in chordwise direction (y*) = const, see figure 1(b) for axis
definition), as a function of the distance to wing root y®) and rotation angle ¢. The

integration domain is 2 = [—0.35, 0.15] x [0, 1]. All quantities are dimensionless,
ie. y™ is given in [L].

conical core. However, the LEV core bursts over the distal part. This is seen by thickening of
the core and and emergence of smaller secondary structures that wrap around the primary
core. The helicity is still positive, but not as large as before the burst.

At the final rotation angle, ¢ = 320°, the LEV is in its statistical equilibrium state. It
begins as a laminar conical vortex from the root of the wing and bursts at around 2/3 of the
wing length, forming a series of 3d strongly helical trailing vortices (ribs) which are
perpendicular to the LEV.

Note that our results are essentially not frame dependent, because the vorticity associated
with changing between the laboratory reference frame and a moving reference frame of the
wing is of order 1, but the vorticity in the vortices is of order 100, i.e., two orders of
magnitude larger.

Garmann and Visbal (2014) point out the co-existence of the burst instability of the LEV
core and the Kelvin—Helmholtz instability in the feeding LEV sheet. While the LEV burst is
obvious in our numerical simulations, the Kelvin—Helmholtz instability is not apparent,
possibly because the shear layer transition point is too far from the rotation axis at Re = 2060.
The two instabilities may have different scaling with the Reynolds number, and this question
needs further investigation.

Figure 5 illustrates the evolution of relative helicity as a function of spanwise position for
Re = 206 (left) and Re = 2060 (right). The horizontal axis in each of the panels corresponds
to the spanwise position y® (see figure 1(b) for the axis definition), and the vertical axis
corresponds to the rotation angle ¢. Thus, the color of a selected row of pixels on the diagram
shows how the helicity density varies along the wing at a given ¢. A column of pixels, by
contrast, shows how the helicity density at a given y™ varies in time. We first discuss the low
Re case. At startup, ¢ < 25°, the helicity density is negligibly small, which means that, even
though some strong vorticity may be produced at the sharp edges, no significant axial flow
has developed in the vortex cores. After ¢ = 25°, the positive helicity builds up in the LEV,
and negative helicity builds up in the wing tip vortex. The wing tip vortex expands as time
progresses, until saturation after ¢ = 150°.

At the larger Re, the diagram is similar to the extent that helicity is positive in the LEV,
negative in the wing tip vortex, and the two regions develop in time until saturation at about
the same time ¢ = 150° and the same radial position y®) = 0.55. However, the magnitude of
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Figure 6. Wavelet spectra of energy and helicity in the rotating wing at Re = 2060:
energy (left) and helicity (right) spectra (thick, continuous lines) together with their
corresponding standard deviation (dashed lines) at three different rotation angles,
¢ = 36°, 74° and 320°, computed using orthogonal Coiflet 12 wavelets. For
comparison, the Fourier spectra are also shown (thin, continuous lines).

helicity is about 3 times as large compared to the low-Re case. This is probably related to the
enhanced axial flow in the high-Re LEV, and overall larger vorticity production in that case.

The wavelet energy spectra (figure 6, left) in log-log representation and helicity spectra in
lin-log representation (figure 6, right) show the scale distribution of energy and helicity,
respectively. They yield similar information as the Fourier spectra, however the wavelet
spectra are less influenced by the mask function x (x, ¢), in particular at small scales, used in
the computations to impose the no-slip boundary conditions. We observe that both energy and
helicity values grow in time and that the maximum magnitude is at the same wavenumber,
k =5, where also a peak in the kinetic energy is observed. The corresponding standard
deviations (dashed lines) illustrate the spatial fluctuations of energy and helicity. We find that
small energy and helicity values at large k exhibit nevertheless large fluctuations, which is a
signature of the flow intermittency.

Visualizations of the scale-wise helicity together with the energy are presented in figure 7
at t = 6. The (positive) helical LEV is well visible at scales 27> and 279, while the tip vortex,
visible at larger scales, is predominantly negative. However, positive helical structures are
also present in the tip vortex at all scales. Also, a negative helical secondary LEV core is
visible, adjacent to the primary positive LEV at scales 27% and 277. The secondary core is
rotating in opposite direction of the primary core, see, e.g., (Garmann and Visbal 2014). Fine
scaled energy contributions are located near the wing, while the far field features energy at
relatively larger scales. This is not surprising, since vortical structures at smaller scales decay
faster because of viscous dissipation.

3.2. Flow generated by flapping wings of a tethered bumblebee

From the revolving wing studied in the previous section we now proceed to the case of a
bumblebee. A key advantage of our numerical method is the simplicity with which complex
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Figure 8. Bumblebee in laminar inflow. Shown is the wingbeat kinematics for the
down-(top) and upstroke (bottom). For two selected times during down- and upstroke,
the flowfield is visualized by vorticity magnitude (top) and helicity (bottom). Helical
leading edge vortices can be identified.

geometries can be taken into account. Therefore we include the insect body in the compu-
tational model, including its legs, antennae and proboscis. For an illustration we refer to
figure 1(c). The body is responsible for the major part of aerodynamic drag and it may
contribute, though less significantly, to the lift as well. In the interest of brevity we refer to the
supplementary material of (Engels et al 2016) for a complete description of the modeled
insects morphology.

Figure 8 illustrates, in the top and bottom strips, the wingbeat kinematics for the down-
and upstroke. The mean stroke plane is inclined with respect to horizontal, and the geometric
angle of attack is larger during the downstroke.

Figure 8 also shows visualizations of the flow field at two selected instants, t = 0.3 and
t = 0.7, which are in the middle of the down- and upstroke, respectively. The vorticity field,
|w|, shows the large amount of vorticity generated at the leading edges of the wing (A). This
zone of intense vorticity appears to be continuous even in the tip vortex. Behind the body,
where the wings shed their leading edge vortices at the end of the previous upstroke (B),
another zone with elevated values of vorticity exists. The overall flow topology is highly
complex, but symmetry is not broken. The reason for this symmetry lies in the precision of
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the numerical method, in which no symmetry-breaking perturbations occur. The visualization
of helicity however shows that leading edge and tip vortex can be clearly distinguished (C) as
they have opposite signs in H. This distribution of vorticity and helicity is qualitatively
similar to what has been found in the case of the revolving wing in figure 2, though in the
quantitative scales of H and |w| differ significantly, even for a comparable Reynolds number.
However the Reynolds number is difficult to compare in both cases, as the wingtip velocity in
the bumblebee case is not constant. Instead, the cycle-averaged value is used, but this implies
that the instantaneous wingtip velocity can be larger than in the revolving case. In addition,
the mean flow, which was not present in the revolving wing, increases the instantaneous
relative velocity during the downstroke, as the wings move upstream.

Remarkably, many regions containing vorticity away from the insects exhibit less heli-
city, see D; and D,. As discussed previously, this implies that the nonlinearity of the Navier—
Stokes equation is strong in those regions, and that these structure participate more in the
Kolmogorov cascade of energy.

At the end of the downstroke, the wing reverses its direction, and the LEV is shed into
the wake. The resulting vortex ‘puff’ can be seen in the second visualized time instant (E).
The puff features a much more complex topology than the LEV (A), and its helicity has no
preferential sign. A new, though weaker LEV is formed (F) at the wings, with the same
pattern of helicity and vorticity. The wingtip vortex from the downstroke has formed two
vortex filaments that form a helix (G).

We thus note that the LEV has similar features to the one produced in a rotating wing, but
the wake topology differs due to the reciprocal flapping motion.

We now proceed and revisit the model bumblebee in turbulent inflow, in the same
manner as has been done in previous work (Engels et al 2016). The inflow turbulence,
imposed in a layer upstream of the insect, consists of velocity fluctuations u’ added to the
mean inflow u,,. The fluctuations are obtained from pre-computed simulations of HIT with
Reynolds numbers R, ranging 90-230. Scaled to the insect dimensions this yields turbulence
intensities Tu = u,, /U, between 0.17 and 0.99. For all turbulence intensities, a single
realization is, due to the erratic nature of turbulence, not fully representative. Thus, several
realizations for each turbulence intensity have been computed. The number of independent
wingbeats available for averaging varies between 16 for the lowest and 108 for the largest
value of Tu.

The main result of (Engels er al 2016) was that the ensemble-averaged forces, torques
and the aerodynamic power did not differ from the values in the laminar case, though the
values fluctuated of course. It was concluded that even in the strongest background turbu-
lence, no systematic destruction of the LEV occured, as this would have resulted in a sig-
nificant change in the aerodynamic quantities.

In the present work, the emphasis lies on the helicity, which we did not consider pre-
viously. Integrating the helicity over the half-space of the computational domain with respect
to the bilateral symmetry plane of the insect, one obtains the mean helicity generated by the
left and the right wing. The top part of figure 9 shows the left- and right wing contribution for
two individual realizations. The black line corresponds to laminar inflow, and the integral
helicity is symmetric except for the sign. Their sum is therefore zero, meaning that the
bumblebee produces no net helicity in the wake. By contrast, the orange line corresponds to a
single realization of Tu = 0.99. The strong inflow turbulence breaks the symmetry, and thus,
even though the HIT fields do not contain a net helicity, the left- and right wing contributions
do not add to zero.

The bottom part of figure 9 shows time evolutions of the ensemble-averaged values of
left- and right helicity. The black line again corresponds to the laminar inflow. The values in
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Figure 9. Bumblebee in laminar inflow and turbulent inflow with turbulence intensities
Tu = 0.17, 0.33, 0.63 and 0.99 (colors). Top: time evolution of the instantaneous
helicity H integrated over the left (solid line) and right (dashed line) domain with
respect to the vertical center plane of the bumblebee. Bottom: time evolution of the
ensemble averaged helicity H integrated over the left and right domain with respect to
the vertical center plane of the bumblebee for laminar inflow and turbulent inflow (left)
and corresponding standard deviation (right).

the turbulent simulations however are similar to the laminar ones. This finding is consistent
with (Engels et al 2016). The standard-deviation of the helicity grows with Tu increasing,
thus higher Tu implies, as expected, larger fluctuations.

4. Conclusion

By means of high resolution DNS we studied two flow configurations relevant to insect flight.
First, a rotating bumblebee wing at two Reynolds numbers has been considered as canonical
problem, then we passed to a compete bumblebee model, in order to check if the results
obtained in the former can be extrapolated to the latter.

The revolving wing has been considered at two Reynolds numbers, based on the wingtip
velocity, of about 2000 and 200. A leading edge and tip vortex is observed in both cases. We
found that helicity is not produced near the leading edge, but instead at a position towards the
trailing edge, and that it is due to the axial flow generated by the pressure deficit at the wing
tip. This flow does not develop immediately at the leading edge, hence the lack of helicity
there. The vortex core is highly helical, with large values of H, and & near unity, corresp-
onding thus to alignment or anti-alignment of velocity and vorticity. The nonlinear term is
therefore depleted, and the LEV can be interpreted as a coherent structure as proposed in the
literature. This finding is important as it provides a complementary point of view on the
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observed stability of the LEV, not in contradiction to other concepts like the axial transport of
excess vorticity (Maxworthy 2007). An analysis with orthogonal wavelets allowed us to
characterize the most helical scale and its spatial intermittency. We showed, in agreement
with experimental results, that the integral helicity on the top side of the wing is sensitive to
the Reynolds number, and exhibits, at the higher Re considered, a significant drop that can be
interpreted as vortex bursting. The aerodynamic force production was indeed not affected by
this bursting, and the burst LEV remained attached to the wing.

We verified then, using the bumblebee model, that these results can be extrapolated to
real insects with their more complex flapping motion, as opposed to the simple, continuous
rotation. Similar features in the flow were found, namely helical LEVs and tip vortices with
opposite helicity. In addition, turbulent inflow has been imposed, and we confirmed, in
agreement with (Engels et al 2016), that turbulence does not alter ensemble-averaged flight
characteristics, also regarding the helicity.
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