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The flight of insects has enlightened the flying dream of human beings for centuries. Wing flexibility is often used by insects to increase their
flight efficiencies. However, the mechanism of the increased efficiencies still remains mysterious. Prof. Kai Schneider's group studies the
aerodynamics of a tethered flapping bumblebee using a mass-spring fluid-structure interaction numerical solver. It indicates that a higher flight
efficiency or a larger lift-to-power ratio can be achieved by flapping insects with optimal mechanical properties of the flexible wings. The novel
understanding of insects’ body structure and flying behavior will benefit the design of micro-air vehicles (MAVs).
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The sophisticated structures of flapping insect wings make it challenging to study the role of wing
flexibility  in  insect  flight.  In  this  study,  a  mass-spring  system  is  used  to  model  wing  structural
dynamics  as  a  thin,  flexible  membrane  supported  by  a  network  of  veins.  The  vein  mechanical
properties can be estimated based on their diameters and the Young's modulus of cuticle. In order
to  analyze  the  effect  of  wing  flexibility,  the  Young's  modulus  is  varied  to  make  a  comparison
between two different wing models that we refer to as flexible and highly flexible. The wing models
are  coupled  with  a  pseudo-spectral  code  solving  the  incompressible  Navier–Stokes  equations,
allowing  us  to  investigate  the  influence  of  wing  deformation  on  the  aerodynamic  efficiency  of  a
tethered flapping bumblebee.  Compared to the bumblebee model with rigid wings,  the one with
flexible wings flies more efficiently, characterized by a larger lift-to-power ratio.
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The spectacular flight capabilities of insects and the signific-
ant deformation of their flexible wings have triggered many stud-
ies and attracted numerous scientists of different fields. From an
aerodynamic point of view, flapping wings are distinct from fixed
wing airplanes. A prominent feature of flapping flight is the im-
portant role of the leading edge vortex (LEV) [1] which generates
enhanced  lift  compared  to  steady  aerodynamics,  even  at  high
angles of attack. The development of micro-air-vehicles (MAVs)
with flapping  wings  is  bio-inspired  and  has  different  technolo-
gical applications,  e.g.  allowing  the  remote  observation  of  haz-

ardous environments inaccessible to ground vehicles.  Most nu-
merical investigations  consider  rigid  wings  to  reduce  the  com-
plexity of simulations. The nonlinear interaction of the compos-
ite  wing structures,  which are  anisotropic,  and the surrounding
air requires detailed mathematical modeling and is challenging.
Some experimental  and  few  numerical  studies  have  been  car-
ried out during the last decades and the conclusions were partly
contradictory.  It  was  shown  that  passive  deformations  enhance
lift production in bumblebees by artificially stiffening their wings
using  a  micro-splint  by  Mountcastle  and  Combes  [2]. Experi-
mental methods were used in Campos et al. [3] and Fu et al. [4]
and they found that highly flexible wings exhibit  significant tip-
root lag which weakens vortices and thus reduces the force pro-
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duction.  Numerical  simulations  by  Du  and  Sun  [5]  solving  the
Navier–Stokes equations coupled with measured wing deforma-
tion data compared the results with the rigid counterparts. They
concluded a 10% increase in lift caused by the camber deforma-
tion and a 5% reduction in required power.
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The current work is motivated by and a follow up of the com-
putations  presented  in  Ref.  [6].  There,  we  studied  a  flexible
bumblebee wing rotating around a hinge point at the angle of at-
tack  equal  to .  We  integrated  a  solid  model  based  on  mass-
spring  systems.  The  wing  was  modeled  by  a  network  of  mass
points which were connected by extension and bending springs.
The method allowed us to  take into account the wing flexibility
when  studying  the  aerodynamics  of  insect  flight.  Flexible  and
highly  flexible  wings  corresponding  to  different  stiffness  values
were considered. The results showed that the flexible wing pro-
duces less lift than the rigid wing. However, the latter has a bet-
ter lift-to-drag ratio. On the contrary, the highly flexible wing ex-
perienced a strong tip-root lag caused by twisting. Consequently,
it behaves  poorly  in  terms  of  aerodynamic  performance  reflec-
ted in a much smaller lift and lift-to-drag ratio. Even though the
study provided us some ideas about the impact of wing flexibil-
ity  on  the  force  generation,  the  revolving  wing  motion  remains
too simple  to  understand  the  complicated  dynamics  of  a  flap-
ping wing. The revolving wing quickly attains a steady state and
its dynamic deformation hardly plays a role in the force produc-
tion.  The  wing  kinematics  of  flapping  insects  is  more  complex,
characterized  by  the  flapping  amplitude,  wingbeat  frequency,
angle of attack, etc. These features strongly impact on the ability
of generating lift and drag forces of the wings. Kang and Shyy [7]
showed  that  the  ratio  between  the  flapping  frequency  and  the
first  natural  frequency  of  a  flexible  wing  can  yield  advanced,
symmetric or delayed rotation modes which in turn alter the res-
ulting  lift.  Experiments  were  performed  by  Zhao  et  al.  [8]  using
simple  isotropic  flapping  wings  with  various  stiffness  values  at
different  angles  of  attack.  At  low  angles  of  attack  (  to ),
they found  that  flexible  wings  have  similar  aerodynamic  per-
formance as  rigid  wings  do.  However  flexible  wings  outper-
formed  their  rigid  counterparts  at  high  angles  of  attack  (up  to

).
The aim of the present work is to investigate the aerodynam-

ic  efficiency  of  the  flexible  bumblebee  wing  model  [6]  within  a
tethered  flight  context.  The  wing  motion  is  based  on  kinematic
measurements by Dudley and Ellington [9]. First results presen-
ted in Ref. [10] used a simplified wing model, which lead to some
artifacts in the membrane deformation and the wing seemed un-
realistic. The  current  model  is  improved  to  remove  those  arti-
facts  by  using  different  mesh  structure.  The  resulting  force  and
power time series  are  compared with those obtained for  a  rigid
flat  wing  by  Engels  et  al.  [11]. The  effects  of  the  wing  deforma-
tion and  flexibility  on  the  aerodynamic  forces  and  power  re-
quirement of a flapping bumblebee can thus be assessed.

The  remainder  of  the  article  is  organized  as  follows.  We
present  the  numerical  methods  used  for  solving  the  governing
equations  of  the  flexible  wing,  the  fluid  flow  and  its  coupling.
Then  the  numerical  set-up  and  the  bumblebee  model  is
presents. The numerical results are discussed at last.

For studying the aerodynamic effects of flexibility in flapping
wings, both the wing dynamics and the surrounding flow need to
be modeled. This section will present the numerical methods for
solving this fluid-structure interaction problem.

Solid solver using mass-spring system

The  building  blocks  of  insect  wings  are  membranes  and
veins.  The  resulting  sophisticated  composite  structures  have
nonlinear anisotropic  properties  coming  from  the  truss  frame-
work  composed  of  horizontal  and  vertical  veins  connected  by
membranes [12].  Modelling the mechanical  behaviour of  insect
wings is  difficult.  To mimic the dynamic behaviour of  the com-
plex membrane-vein network, we use a mass-spring system tak-
ing into account the different mechanical properties of the com-
ponents [6]. Veins can be considered as rods resisting mainly the
torsion and  bending  deformation.  On  the  contrary,  the  mem-
brane behaves like a piece of fabric that resists stretch deforma-
tion.

mi (i = 1,2, ...,n)

t

xi vi i

Mass-spring models are an established approach for model-
ing  of  mechanical  structures,  distinguished  by  their  computing
efficiency and ability to handle large deformations. The discret-
ization  of  the  wing  uses  mass  points  connec-
ted by springs. There are different types of springs and our mod-
el is based on bending and extension springs. At a given time ,
the dynamic behaviour of  the mass-spring system is  defined by
the position  and velocity  of the mass point . It is governed
by:

Fint
i +Fext

i = mi ai for i = 1,2, . . .n,
vi (t = 0) = v0,i ,
xi (t = 0) = x0,i , (1)

n Fint
i

Fext
i i mi

ai i

where  is  the  number  of  mass  points,  is  the  internal  force
and  is  the  external  force  acting  on  the -th  mass  point, 
and  are  mass  and  acceleration  of  the -th  mass  point,
respectively.

The system Eq.  (1)  is  then advanced numerically  in  time by
applying  a  second  order  backward  differentiation  scheme  with
variable time steps [13]:

qn+1
i − (1+ξ)2

1+2ξ
qn

i +
ξ2

1+2ξ
qn−1

i = 1+ξ

1+2ξ
∆t n f(qn+1

i ), (2)

q = [
xi , vi

]T

f(q) = [
vi , m−1

i (Fint
i +Fext

i )
]T

ξ=∆t n/∆t n−1

∆t n ∆t n−1

qn+1

where  is the phase vector containing positions and

velocities  of  all  mass  points  and  is
the right hand side function,  is the ratio between
the current time step  and the previous one . The phase
vector  of  the  system  at  the  current  time  step  is  found  by
solving Eq. (2) using the Newton–Raphson method. All details of
this solver are explained in Ref. [6].

Fluid solver and volume penalization method

O(101) O(104)
The  Reynolds  number  of  insect  flight  typically  lies  in  the

range of  and . The bumblebee studied here has a
Reynolds number  of  about  2000.  Thus  the  fluid  flow  is  access-
ible for  direct  numerical  simulation,  resolving  all  scales  of  mo-
tion.  It  is  governed  by  the  penalized  incompressible
Navier–Stokes equations [14],

∂t u+ω×u =−∇Π+ν∇2u− χ

Cη

(u−us )︸ ︷︷ ︸
penalization term

− 1

Csp

∇× (χspω)

∇2︸ ︷︷ ︸
sponge term

, (3)
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∇·u = 0, (4)

u(x, t = 0) = u0(x) x ∈Ω, t > 0, (5)

Ω
u ω=∇×u

Π= p + 1

2
u ·u

which are solved on a Cartesian grid in a rectangular cuboid .
In  the  above  Eqs.  (3)-(5),  is  the  fluid  velocity,  the

vorticity,  the  total  pressure  and ν the  kinematic

viscosity.

χ

The penalization and sponge terms in the momentum equa-
tion are  added  to  impose  the  boundary  conditions  in  the  com-
plex and time varying geometry. The latter is added to damp the
wake flow and to remove the periodicity of the Fourier discretiz-
ation, which affects the upstream inflow. The penalization term
allows  to  impose  the  no-slip  boundary  conditions  on  the  fluid-
solid  interface,  as  explained  in  Ref.  [15].  The  mask  function 
contains all geometrical information of the solid and is given by:

χ(δ) =


1, δ≤−h,
1

2

(
1+cosπ

δ+h

2h

)
, −h < δ< h,

0, δ≥ h,

(6)

δ

2h

where  is  the  signed  distance  to  the  fluid-solid  interface.
Oscillating forces in the case of moving solid bodies are avoided
using  a  smoothing  layer  with  thickness  which  yields  a
smooth mask function [16].

The penalized Navier–Stokes Eqs. (3)-(5) are discretized with
a Fourier pseudo-spectral method, expanding velocity, pressure
and vorticity as truncated Fourier series, i.e.,

q(x, t ) =
Nx−1∑
kx=0

Ny−1∑
ky=0

Nz−1∑
kz=0

q̂(k, t )exp(ik ·x), (7)

k = [kx ,ky ,kz ]T i =p−1
q̂ q

and  minimizing  the  weighted  residual,  yields  a  system  of
nonlinear  ordinary  differential  equations  (ODEs)  for  the
unknown  Fourier  coefficients  of  the  velocity.  Here

 is  the  wavevector  and .  The  Fourier
coefficients  of  a  quantity  can  be  computed  efficiently  on
massively  parallel  computers  with  the  fast  Fourier  transform
(FFT)  using  the  P3DFFT  library  [17].  The  Fourier  spectral
method is characterized by its high numerical precision and the
absence of numerical dissipation and diffusion errors. Moreover,
the solution of linear systems for imposing the incompressibility
is  avoided,  as  the Laplace operator  can be inverted by a  simple
division.  The  quadratic  nonlinear  term  is  evaluated  in  physical
space and the aliasing error are fully removed using the 2/3 rule.
Details on the implementation in the FLUSI code1 can be found
in Ref. [15].

Fluid-structure interaction

Time integration of the coupled fluid-solid system is using a
semi-implicit staggered [18]. The fluid flow is advanced using an
explicit second  order  Adams–Bashforth  schemes  (AB2)  and  in-
tegrating factors for the viscous term. The numerical stiffness of

ρsolid/ρfluid = ρcuticle/
ρair = 1300/1.225 = 1061

the  solid  model  calls  for  a  fully  implicit  time  integration  and  a
second order  backwards  differentiation  formula  (BDF2)  is  em-
ployed.  The  flowchart  in Fig.  1 illustrates  the  coupling  of  solid
and fluid solver. As shown in Refs. [19–21], the force for the solid
deformation  is  dominated  by  the  pressure  contribution  for  the
range of Reynolds numbers (75–4000). The viscous shear contri-
bution can be considered negligible compared to the static pres-
sure  and  is  thus  not  taken  into  account.  This  semi-implicit
staggered  scheme,  where  the  static  pressure  is  computed  from
the previous  time  step  of  the  solid  model,  is  called  weak  coup-
ling because  it  is  conditionally  stable.  The  solid  has  to  be  suffi-
ciently heavy with respect to the fluid density, a condition which
is  fulfilled  as  we  have  the  density  ratio 

. The advantage of weak coupling is its
efficiency,  as  the  fluid  and  the  solid  need  to  be  advanced  only
once at the current time level. Further details on the fluid-struc-
ture interaction (FSI) method including a detailed validation can
be found in Ref. [6].

To study the influence of wing flexibility on the aerodynamic
forces,  we  compare  the  flexible  wings  with  rigid  ones  using  the
same numerical set up in previous work in Ref. [11].

Flow configuration

6R ×4R ×4R R
Figure  2 shows  the  computational  domain  of  size

 where  is the bumblebee wing length. The space

 

Start

Initialize flow field u0, p0 and insect

model χ0, us
0 at time t0 = 0, n = 0

Fluid velocity field un

and insect state Sn at time tn

Construct mask function χn

soild velocity field us
n from insect state Sn

Advance fluid to new time level

using AB2 scheme

(un, us
n, χn) → un + 1

Advance solid to new time level

using BDF2 scheme

(Sn − 1, Sn, Fn + 1) → Sn + 1

Advance to new time level

tn = tn + δt
n = n + 1

End

ext

Compute static pressure pn + 1

from (un + 1, us
n, χn)

Compute external pressure force Fn + 1 acting

on the insect using delta interpolation I (pn + 1)

tn = tmax

 

Fig. 1.   Flowchart of the semi-implicit staggered scheme for the flu-
id-structure interaction algorithm.

1 FLUSI:  freely  available  for  noncommercial  use  from  GitHub
(https://github.com/pseudospectators/FLUSI).
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1152×768×768

xcntr = (2R,2R,2R)T

x

Csp = 10−1

Cη = 2.55×10−4

u∞ = (1.246R f ,0,0)T f

u

discretization uses  grid points. Both, the trans-
lational  and  rotational  motion  of  the  insect  body  are  disabled
and the bumblebee is tethered at . The peri-
odicity  of  the  Fourier  spectral  method  requires  a  thin  vorticity
sponge outlet, covering the last 4 grid points in -direction. This
damps  out  the  wake  and  avoids  the  upstream  influence  of  the
computational  domain.  The  value  of  the  sponge  penalization
parameter is set to , which is larger than the permeab-
ility .  The  sponge  term  is  divergence-free  and
thus avoids the non local influence on the pressure field. Details
on the influence of  the vorticity  sponge are given in Ref.  [15].  A
head wind with a mean flow accounting for the forward velocity
of the insect, , where  is the wingbeat fre-
quency,  is  imposed  in  the  entire  computational  domain  by
simply fixing the zeroth Fourier mode of the velocity  [18].

Bumblebee model

The  bumblebee  model  here  is  the  same  as  the  one  used  in
Ref.  [22]  and  derived  from  case  BB01  in  Ref.  [9],  except  for  the
wings which will be introduced later.

g = 9.81

R = 15
R = 13.2

Re =Utipcm/νair = 2685 Utip = 2ΦR f = 9.15
cm = 4.6

νair = 1.568×10−5 f = 152
T = 1/ f = 6.6
ϕ= 115◦

The bumblebee is  composed of  rigid  components  including
the  head,  thorax,  abdomen,  all  legs,  proboscis  and  antennae.
These  parts  are  circular  elliptical  or  cylindrical  sections  joined
by  spheres,  and  bilateral  symmetry  is  assumed.  The  animals'
body mass, M, is 175 mg, the gravitational acceleration 
m/s2. Based on the measured data from Ref. [23], the wing length

 mm  which  is  slightly  bigger  than  the  rigid  wing  (with
 mm) used in Ref. [22]. The Reynolds number is defined

by ,  where  m/s  is
the mean wingtip velocity,  mm the mean chord length,

 m2/s is the kinematic viscosity of air, 
Hz (  ms) is the wingbeat frequency (T is duration)
and  is the wingbeat amplitude. The wingbeat kinemat-
ics are prescribed based on the measured data of Dudley and El-
lington [9].

Flexible wing model

The  two  flexible  wings  of  the  insect  are  modeled  using  the
mass-spring  system  as  detailed  in  Ref.  [6].  In  the  following  we
describe the venation pattern, the mass distribution and the flex-
ural rigidity of the veins.

Venation pattern

1065

465 1065

The venation pattern plays a crucial role for the wing dynam-
ics during flapping flight and is alleged to be responsible for the
anisotropic  properties  of  the  wing.  This  motivates  the  use  of  a
functional  approach  which  reflects  the  vein  network  directly  in
the  mass-spring  model  and  is  adapted  from  Ref.  [23]  including
the  wing  contour.  For  discretization  of  the  wing,  a  triangular
mesh  with  mass  points  is  used,  as  shown  in Fig.  6.  The
mesh  is  generated  with  the  open-source  integration  platform
SALOME2.  In  Ref.  [6],  we performed a  mesh convergence study
for the revolving motion, comparing between two wings, discret-
ized  by  and  mass  points.  We  found  that  the  coarse-
mesh wing showed no major difference with respect to the fine-
mesh  wing  concerning  the  generated  aerodynamic  forces.
However,  in  the  present  case,  a  fine-mesh  wing  is  required  for
the pressure  interpolation,  as  for  the  flapping  motion  the  pres-
sure field is expected to be more unstable.

Membrane

i , j ,k, l

In our previous work [6], a mass-spring system composed of
mass points and extension springs with an unstructured triangu-
lar  mesh  was  used  to  model  the  membrane.  By  construction,
every  four  neighboring  points  form two  adjacent  tri-
angles  as  shown  in Fig.  3a.  The  limitation  of  this  model  is  that
the bending stiffness of the wing membrane is not taken into ac-

 

Periodic boundary

Periodic boundary

umeanflow

Y

Z

X

Vorticity sponge

outlet

 

6R ×4R ×4R

xcntr = (2R,2R,2R)T

u∞ = (1.246R f ,0,0)T

Fig.  2.     Computational  domain of  size  used in all
simulations. A bumblebee model with flexible wings is tethered at

 in  a  flow  with  the  mean  flow  velocity
.  A  vorticity  sponge region is  placed at  the

outlet to damp out vortices. Periodic boundary conditions are set for
the four other sides of the domain.

 

a. 2D triangular mesh b. 2D triangular mesh

with crossover spring

i

k

j

l

i

k

j

l

i

k

j

l
c. 3D out-of-plane bending

 

Fig. 3.   Illustration of two adjacent triangles of the unstructured tri-
angular mesh. The mass points are represented by the circles while
the extension springs are represented by the continuous lines and
the dashed line (crossover spring). The upper figures are the previ-
ous triangular mesh a  without crossover spring and the currently
used triangular mesh b with crossover spring in 2D. The lower fig-
ure illustrates the role of crossover spring for creating bending stiff-
ness of the surface.

2 https://www.salome-platform.org/
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count. As a result, when the wing is under large forces, e.g. dur-
ing  wing  rotation  at  the  end  of  the  downstroke,  folds  and
wrinkles are observed at the trailing edge and the tip of the wing
(Fig. 4a). These undesired deformations make the wing look un-
realistic  and  affect  the  force  production.  To  overcome  this,  the
bending stiffness is added to the current model to prevent such
folds and wrinkles.

i j

Unlike  the  tensile  stiffness,  which  involves  computing  in-
plane  deformations  and  forces,  the  modeling  of  the  bending
stiffness of  a  sheet  is  rather  more  complicated  because  it  re-
quires  computing  out-of-plane  forces  normal  to  the  deformed
surface. There are two main methods have been proposed in the
literature to deal with this problem. The first one is to model pre-
cisely the bending stiffness of the sheet by applying bending mo-
mentum  which  is  inversely  proportional  to  the  angle  between
two adjacent mesh elements. Although this approach can result
in a good accuracy, the evaluation of bending forces is costly and
it can reduce the numerical performance of the mass-spring sys-
tem [24]. On the other hand, the second approach is much sim-
pler where a crossover spring is added between the two triangles
from vertex  to vertex  as shown by the dashed line in Fig. 3b.
When a  bending  deformation  occurs,  the  added  spring  will  ap-
ply forces to these two vertices to resist the bending. This meth-
od is claimed to be inaccurate in some cases when the bending
is  too  small  or  too  large  [24].  However  for  our  problem,  the
method  is  confirmed  to  work  effectively.  The  folds  and  the
wrinkles  are  no longer  observed during wing rotation while  the
numerical efficiency of the model remains almost as effective as
the  old  model.  These  changes  of  wing  shape  in  turn  affect  the

force  production  of  the  wing,  especially  during  stroke  reversals
as shown in Fig. 5.

Mass distribution

mw = 0.791

dv lv ρc = 1300

R ρairR3

The inertia of the wing is directly related to the mass distribu-
tion and the position of the mass center plays an important role
for the wing dynamics. Based on measured wing mass data [23]
and the venation pattern,  the mass distribution can be determ-
ined.  Similar  to what has been done in Ref.  [23],  we choose the
total mass of the wing to be  mg and according to the
geometry it is distributed into the vein and membrane compon-
ents. The veins are modeled as rods with circular cross sections
with  diameter  and  length ,  made  out  of  cuticle, 
kg/m3 [23]. Accordingly  their  mass  can  be  determined,  the  val-
ues  are  assembled  in Tables  1 and 2.  We  use  dimensionless
quantities for  both  the  diameter  and  the  mass,  normalized  re-
spectively with the wing length  and the air density .

mi [xi , yi ]

To obtain the mass distribution of the membrane as close as
possible  to  the  experimental  data  of  bumblebee  wings  [23],  we
use  an  optimization  method  [6].  The  objective  function  is  the
difference between the mass center of the wing measured in the
experiment  [23]  and  the  one  calculated  from  the  mass-spring
model. For the mass point  at position , which is in the
membrane, we obtain:

mi = 9.14×10−5 −3.48×10−5xi +2.48×10−4 yi . (8)

3.85×10−3

x 0.93×10−3 y
Differences between two centers of mass amount to R
in the -direction and R in the -direction. These are
negligible compared to the reference wing length R.

Flexural rigidity of veins

Because the bending stiffness of the membrane is small,  the
flexural rigidity of the wing comes mainly from the flexural rigid-
ity EI of  veins  which  is  calculated  based  on  their  material  and
geometry. While the estimation of their second moments of iner-
tia I is  straight  forward  using  the  diameter  data  from Tables  1
and 2,  determining  the  Young's  modulus  is  not  trivial.  In  our
present  work,  the  veins  are  considered  to  be  made  of  cuticle
which  is  reported  to  have  a  Young's  modulus  in  the  range  of  1
kPa to 20 GPa [25]. The wing needs to be flexible enough to re-
veal the influence of wing flexibility to the aerodynamic perform-
ance  of  insects  but  it  cannot  be  too  flexible  to  show  unrealistic
mechanical  behaviors.  For  these  reasons,  two  values  of  the
Young's modulus E are used: 7 GPa and 0.7 MPa, corresponding
to flexible and highly flexible wing models, respectively.

F = ρairR4 f 2

P = ρairR5 f 3

The aerodynamic  forces  and  the  corresponding  power  con-
sumption  of  the  bumblebee  model  with  flexible  wings  and
highly flexible wings will be presented in this section. Moreover,
with a view to the influence of wing flexibility on the insect aero-
dynamic  performance,  the  results  are  compared  with  the  ones
obtained in Ref. [11] where the same bumblebee with rigid wings
was  studied. Figure  7(a-c)  shows  the  vertical  and  horizontal
forces  as  well  as  the  aerodynamic  power  computed using rigid,
flexible and highly  flexible  wings.  For  the  purpose of  comparis-
on,  the  forces  are  normalised  by  and the  aerody-
namic  power  by . By  the  definition  of  the  coordin-
ate system, the positive of the vertical (horizontal) forces corres-
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Fig. 4.   Wing deformation during the stroke reversal at the end of the
downstroke. a Old model without crossover springs. b New model
with crossover springs.
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F = ρairR4 f 2
Fig.  5.     Vertical  force  and  horizontal  force,  normalised  by

, generated by the old wing model without crossover
springs (continuous red line) and the new wing model with crossov-
er springs (dash-dot blue line). The new wing generates more force
than the old one during stroke reversal.
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pond  to  the  lift  (drag).  The  simulations  are  computed  for  4
strokes with  approximately  28800  time  steps  using  3  Intel  Cas-
cade Lake  6248  nodes  (with  120  cores  at  2.5  GHz)  and  con-
sumed about  8200  CPU  hours  for  each  simulation.  A  visualiza-
tion of the flow field and the deformation of the wing is shown in
Fig. 8 for the case of high flexibility.

Overall,  the  forces  generated  by  the  flexible  wings  tend  to
converge  toward  the  forces  generated  by  the  rigid  wings  when
the  wing  stiffness  gets  larger.  Moreover,  during  one  stroke,  the
more flexible the wing is, the weaker the peaks and the valleys of
the  forces  at  the  ends  of  upstroke  and  downstroke  get.  These
peaks and valleys can be explained by the sudden rotation of the
wings  during  stroke  reversals.  Based  on  standard  Kutta-
Joukowski theory, Sane and Dickinson showed that the net force
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Fig. 6.   Illustration of the mass-spring model which is meshed based
on measured data of real bumblebee wings [23]. The blue and white
marker represents  the mass center.  Color  codes (red,  green and
blue) are used for identifying the veins and the membranes are rep-
resented by gray circles.
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Fig. 7.   Vertical force, horizontal force (normalised by )
and aerodynamic power (normalised by ) generated by
a bumblebee with rigid wings (continuous black) [22], flexible wing
(dash-dot blue) and highly flexible (dash red). Circles represent the
cycle-averaged value of forces and power.

 

 

Re = 2685
||ω|| = 100

t = 0.45/T
2R ≤ y ≤ 4R

Fig.  8.     Visualization  of  flow  generated  by  a  tethered  flapping
bumblebee with highly flexible wings in laminar flow at 
showing normalized absolute vorticity isosurfaces  (light
blue). The flow field is plotted at time . The vortices are
only shown in the region  for the purpose of visualiz-
ing the deformation of the left wing.

dv

mv

Table 1   Dimensionless vein diameter  (adapted from Ref. [23])
and their corresponding dimensionless mass  for forewing.

Vein 1 2 3 4 5 6

Nominal
diameter

0.007 0.0074 0.0055 0.0070 0.0040 0.0048

Nominal mass 0.0209 0.0237 0.0076 0.0063 0.0031 0.0094

Vein 7 8 9 10 11 12

Nominal
diameter

0.0040 0.0038 0.0041 0.0048 0.0045 0.0038

Nominalmass 0.0019 0.0009 0.0023 0.0064 0.0017 0.0018

Vein 13 14 15 16 17 18

Nominal
diameter

0.0042 0.0038 0.0034 0.0032 0.0032 0.0044

Nominal mass 0.0010 0.0020 0.0008 0.0005 0.0004 0.0009

Vein 19 20 21

Nominal
diameter

0.0015 0.0018 0.0020

Nominal mass 0.0001 0.0001 0.0009

dv

mv

Table 2   Dimensionless vein diameter  (adapted from Ref. [23])
and their corresponding dimensionless mass  for hindwing.

Vein 1 2 3 4 5

Nominal diameter 0.0065 0.0043 0.0046 0.0011 0.0038

Nominal mass 0.0180 0.0071 0.0024 0.0001 0.0043

Vein 6 7

Nominal diameter 0.0037 0.0020

Nominal mass 0.0005 0.0012
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generated by a rotating wing is proportional to the angular velo-
city of the wing [26, 27]. Since the motion of the rigid wing is im-
posed, every point on the wing rotates with the same angular ve-
locity. This is no longer the case with the flexible wing. By taking
the wing flexibility into account, the influence of the inertial and
aerodynamic  forces  can  now  be  observed.  These  forces  resist
against the movement of  the wing, make the trailing edge bend
in the opposite direction and create a negatively cambered wing
compared to the flat rigid wing. This kind of deformation is pre-
dicted to weaken leading edge vorticity  [8]  and causes the wing
to generate less force.  Another way of  looking at  the problem is
that the ability of adapting the wing shape helps to mitigate the
large pressure jump between upper and lower surfaces,  especi-
ally at the trailing edge [7] and provides a smoother flight [28, 29].

For each stroke, the cycle-average values of the thrust, the lift
and the required aerodynamic power are integrated and shown
in Table 3. The effect on the average thrust of the wing flexibility
can be considered negligible since these changes are quite small
comparing to the fluctuations of the thrusts. On the other hand,
the  average  lifts  generated  by  the  flexible  and  highly  flexible
wings are 12.44% and 25.68% smaller then the one of rigid wings,
respectively. The decrease of the effective angle of attack caused
by wing deformation can be understood as the reason for the de-
clines  of  the  average  lift.  The  instantaneous  angle  of  attack,
which is claimed to play a significant role in the force generation
[4],  is  altered  by  the  shape  adaptation  of  the  wing  during  the
flapping motion. However, it will be premature to conclude that
that  the  rigid  wings  outperform  aerodynamically  their  flexible
counterparts  based  on  these  negative  impacts  on  lift.  Although
the  flexible  wings  generate  smaller  forces,  they  consume  much
less  energy,  with  almost  18%  and  29%  required  aerodynamic
power are reduced for the flexible and highly flexible wings,  re-
spectively.  Both  flexible  and  highly  flexible  wings  have  better
cycle-averaged lift-to-power ratios than the rigid wings (Table 3).
Nevertheless, that does not necessarily mean that the more flex-
ible  the  wing  is,  the  higher  lift-to-power  ratio  the  wing  attains
since the flexible wings have a greater lift-to-power ratio than the
highly flexible wings.

The impact of wing flexibility was studied by means of high-
resolution direct numerical simulation on massively parallel su-
percomputers.  Tethered  flight  of  bumblebees  using  flapping
wing kinematics measured in experiments by Dudley and Elling-
ton  [9] was  considered  extending  thus  previous  work  on  re-
volving  flexible  wings  [6].  For  this  fluid-structure  interaction
problem,  the  fluid  pseudo-spectral  solver  FLUSI  with  volume
penalization  was  used  and  the  flexible  wing  was  modeled  with
an improved mass-spring approach.

A comparison  of  the  aerodynamic  forces  and  the  power  re-
quirements  between  highly  flexible,  flexible  and  rigid  wings
showed that flexibility allows reducing the energetic cost of flap-
ping flight characterized by the lift-to-power ratio. However, the
highly flexible wing appears to be less efficient than the flexible

wing. This can be interpreted that there is an optimized zone of
wing  flexibility,  which  is  ideal  for  flying.  Furthermore,  the  wing
inertia  contributes  damping  fluctuations  in  the  aerodynamic
forces and hence stabilizes the insect during flight.

The wing kinematics plays a crucial role for the aerodynamic
performance. In our future studies, we are planning to investig-
ate its influence in more detail. Other species, like Calliphora, for
which in vivo measured wing kinematics and stiffness are avail-
able, will be likewise studied.
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