
Abstract—We consider the effects of chordwise 
flexibility on the aerodynamic performance of flapping 
wings using numerical simulation. The two-
dimensional Navier–Stokes equations are solved using 
a Fourier pseudo-spectral method with no-slip 
boundary conditions imposed by the volume 
penalization method. The flexible wing is modelled 
with a non-linear beam equation. Our numerical 
simulations of heaving plates show that the maximum 
thrust is achieved at a stroke frequency lower than 
resonant, which is in agreement with experiments. The 
oscillatory part of the force only increases in amplitude 
when the frequency increases. We also consider 
aerodynamic interactions between two heaving foils. 
 
Index Terms—Flapping flight, fluid-structure 

interaction, spectral method, volume penalization 
method. 
 

I. INTRODUCTION 
In forward flight, flapping wings generate the desired 

thrust by doing up and down strokes combined with 
supination and pronation movements that ensure the 
required angle of attack. A canonical two-dimensional 
approximation to this process is the heaving (plunging) 
and pitching motion of a foil, shown in Fig. 1. If the 
three-dimensional wing structure is rigid, the time 
evolution of the positional angle φ(t) and the angle of 
incidence α(t) should be imposed (Fig. 1a). In the two-
dimensional approximation, shown in Fig. 1(b), this is 
equivalent to prescribing a heave motion yle(t) and a 
pitch motion α(t) (see, e.g., [1]). However, if the wing 
is flexible and clamped at the leading edge, the 
effective angle of incidence varies passively due to the 
action of inertial and aerodynamic forces (Fig. 1c), and 
this mechanism also generates thrust with only the 
heave motion imposed (see, e.g, [6,7]). Note that there 
are several distinct effects associated with the spanwise 
and the chordwise flexibility [7,9], and this work 

focuses on the chordwise flexibility only. 
In this paper, we present a new computational 

method for modelling the flow dynamics around 
flexible foils, and show its application to flapping wing 
propulsion. The computational setup and the governing 
equations are described in Section II, followed by an 
outline of the discretization schemes of the fluid-
structure solver in Section III. The results of the 
numerical simulations of single and double flapping 
wings are discussed in Section IV. Conclusions are 
drawn in Section V. 

 

 
Fig. 1. Schematic diagram showing a chordwise section of a 

three-dimensional wing (a), a two-dimensional 
approximation to a rigid pitching and heaving foil (b) and a 
flexible heaving foil clamped at the leading edge (c). The 
following geometric parameters are shown: φ - positional 

angle, α - geometric angle of attack, yle - vertical coordinate 
of the leading edge, θte - deflection angle at the trailing edge, 

αc - geometric angle of attack of a flexible foil. 

II. COMPUTATIONAL SETUP AND 
GOVERNING EQUATIONS 

The computational approach extends our previous 
work on the modelling of flows past rigid obstacles 
[2,3]. We consider either one or two flexible flat wings 
immersed in viscous incompressible fluid, see Fig. 2. 
The flow is assumed to be two-dimensional. The 
motion of the fluid is described by the Navier–Stokes 
equations. We employ the vorticity-stream function 
formulation. For convenience, all equations and 
quantities are rendered dimensionless, with the fluid 
density, the wing chord length and a given velocity 
scale being the set of reference values. The Navier–
Stokes equations are solved with the no-slip boundary 
condition | |sΓ Γ=u u  imposed at the wing surface Γ. 
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We use the volume penalization method [5] to model 
the no-slip boundary condition, yielding 
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where ω = ∇×u  is the vorticity, the velocity u is 
determined as ψ⊥= ∇u  (the mean flow is zero in the 
present work), ( / , / )Ty x⊥∇ = −∂ ∂ ∂ ∂  denotes the 
orthogonal gradient, and the stream function ψ is the 
solution of 2ψ ω∇ = . The parameter Re is the 
Reynolds number based on the wing chord, the chosen 
reference velocity and the kinematic viscosity of the 
fluid. The first term on the right-hand side serves to 
impose the no-slip boundary condition. It contains the 
mask function χ(x,t), which is the indicator function 
equal to 1 inside the domain occupied by the solid wing 
and 0 elsewhere. The field us(x,t) is the velocity of the 
solid plate. The parameter ε is a small number, 
physically interpreted as the permeability of the solid. 
The solution of the penalized problem converges to the 
solution of the original Dirichlet boundary-value 
problem as ε→0 [5]. The second term on the right-hand 
side is a 'vorticity sponge' introduced in order to 
remove the vorticity from the outer boundary of the 
computational domain. As explained in the next 
section, our numerical method assumes periodic 
boundary conditions, therefore we have to ensure that 
the vortex wake does not re-enter the computational 
domain after crossing its boundary. Thus, the sponge 
mask function χsponge is equal to 1 in a thin layer near 
the outer boundary and 0 elsewhere. 

 

 
Fig. 2. Computational setup. In the present numerical 

simulations, Lf = 8 and hsponge = 0.05. 

The wing section is modelled as an inextensible 
beam made of a linear-elastic material satisfying 
Hooke's law. The structural contribution to the energy 
dissipation is neglected. The stiffness and mass are 
distributed uniformly. Assuming at this point that the 
beam is slender, we employ a non-linear beam equation 
suitable for large deflections, 
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where T is the tension inside the beam and θ is the local 
deflection angle. The wing has unit chord length, and 

[0,1]s∈  is the reduced arc length coordinate measured 
from the leading edge. The parameters µ and η are, 
respectively, the reduced density and stiffness of the 
beam. The pressure difference between the upper and 
the lower side, [p], is obtained by interpolating the fluid 
pressure on the beam surface defined as an isoline of 
the mask function χ=0.5. The clamped-free boundary 
conditions for (2)-(3) are formulated as 
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III. NUMERICAL METHOD 
Equation (1) is solved using a classical Fourier 

pseudo-spectral method. In addition to its ease of 
implementation, this method provides an efficient way 
of solving the Poisson equation for the stream function 
ψ, since the Laplace operator is diagonal in the Fourier 
basis. Moreover, it employs the Fast Fourier Transform 
(FFT), for which there exist efficient and well 
optimized software packages. Meanwhile, the Fourier 
pseudo-spectral discretization implies that the 
computational domain is rectangular, the discretization 
grid is uniform Cartesian, and that the boundary 
conditions are periodic. Since the present study requires 
boundary conditions other than periodic, we use the 
volume penalization techniques to impose the no-slip 
conditions at the solid boundary and the vorticity 
sponge in the far field, as explained in the Section II. 
The time integration is exact for the viscous term and 
an adaptive second order Adams–Bashforth scheme is 
used for the nonlinear term. The details of the fluid 
solver were reported earlier in [2,3]. 

Equations (2)-(3) are solved using a second order 
finite difference spatial discretization. All derivatives in 
s are approximated by central finite differences 
everywhere, except near the boundaries where we use 
fourth order backward schemes. To advance in time we 
apply a second order Crank–Nicolson scheme, and treat 
all terms semi-implicitly. To solve the resulting non-
linear algebraic system, Newton's method is applied 
with the Jacobian computed analytically. 

The fluid-structure coupling is achieved by using a 
sequential staggered scheme. First, the fluid is 
advanced, while keeping the mask function χ 
unchanged during the time step. The updated fluid-
dynamic pressure is used to calculate the forces on the 
beam at the new time step, which are then transmitted 
to the solid solver to advance the beam to the next time 
level and to generate the mask function for the next 
time step. More details on the fluid-structure coupling 
method can be found in [4]. 



IV. RESULTS AND DISCUSSION 

A. Single wing section 
The numerical simulations presented in this paper are 

inspired by experiments with a mechanical flapper 
model conducted by Ramananarivo et al. [6]. The 
model has two semi-circular wings with length     
R=0.06 m and mid-span chord length c=0.03 m. The 
wing model chosen here as a reference has rigidity 
B=1.83·10−4 N·m, mass per unit area ms=10.63·10−2 
kg·m−2, thickness h=0.078 mm and relaxation 
frequency f0=34.2 Hz. Since the far-field inflow 
velocity is zero, it cannot be used as a reference 
velocity necessary for normalizing the equations. 
Therefore, the reference velocity is set to Uref=1 m/s, 
which is related to the wing kinematics as explained 
later in this Section. This corresponds to the following 
values of the dimensionless parameters of our 
computational setup: 
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where it is assumed that the air density is ρf=1.226 
kg/m3.  

The experimental value of the Reynolds number, 
Re=cUref/νf, is about 2000 (νf is the kinematic viscosity 
of air). Note that this value is based on the reference 
velocity Uref, as it enters equation (1). To obtain the 
Reynolds number based on the wing velocity, this value 
should be corrected by a factor proportional to the 
stroke frequency. Hence, matching the experimental Re 
presents difficulties for the numerical simulation if the 
frequency is large. For this reason, numerical 
simulations reported in this paper correspond to 
Re=100, that allows analyzing a wide range of 
frequencies. Meanwhile, similarities between the 
present simulations and earlier experimental findings 
[6] suggest that the Reynolds number effects are not 
dominant in this particular problem. 

The thickness of the wing imposed in the fluid solver 
using the volume penalization method is determined 
from numerical considerations [4], and the penalization 
parameter equals ε=2·10−4. The periodic domain is a 
square of side Lf=8, and the vorticity sponge of strength 
εsponge=2·10−4 is applied at the four sides in thin layers 
with thickness hsponge = 0.05. We remind that, unless 
otherwise stated, all distances reported in this paper are 
normalized by the chord length c, time is normalized by 
c/Uref. The forces are per unit span and normalized by 

2
f refU cρ . The number of discretization grid points in 

the fluid solver is equal to Nf
2=29402. In the beam 

equation solver, the number of points is Ns=384. 
Initially, at time t=0, the fluid is at rest. Zero mean 

fluid velocity is imposed at all time t. During the 
simulation, the position of the leading edge of the foil 
varies in time as xle=x0 and yle=y0+yFcos(2πt/tF), where 
the amplitude of the leading edge motion is yF=0.5, the 
neutral position of the leading edge is x0=−1.5, y0=0, 
measured from the centre of the domain, and tF is the 

period of the sinusoidal motion. Note that the reference 
velocity Uref corresponds to the maximum dimensional 
velocity of the leading edge oscillating with tF=π. A 
series of simulations has been carried out with tF 
ranging from 1 to 6. For tF=1.4, the time evolution of 
the leading and trailing edge displacements is shown in 
Fig. 3. The amplitude of vertical oscillations of the 
trailing edge is more than twice yF. Also note the phase 
lag of about 0.11tF. Horizontal oscillations of the 
trailing edge are non-negligible: their amplitude is 
about 0.5yF. 

 
Fig. 3. Time evolution of the vertical displacement of the 

leading edge yle-y0 (black dashed line), vertical displacement 
of the trailing edge yte-y0 (black solid line) and horizontal 

displacement of the trailing edge xte-x0 (grey line). 
 

Fig. 4. Time evolution of the horizontal (a) and vertical (b) 
component of the fluid-dynamic force. Dashed lines show 

the mean force over the last 11 strokes, and dash-dotted lines 
indicate intervals of plus/minus one standard deviation. The 

time span of one stroke is tF = 1.4 (frequency f ≈ 0.714). 

Fig. 4 presents the time evolution of the fluid-
dynamic force acting on the wing for the case tF=1.4. 
The x-component of the force (thrust) oscillates but 
does not reach a periodic state during the simulation. 
Peaks occur with twice the stroke frequency. However, 
after t=8, every second peak is stronger, indicating a 
systematic asymmetry between the upstrokes and 
downstrokes. The mean value is negative, i.e., the wing 
generates a non-zero thrust. The y-component (lift) 
oscillates with the stroke frequency. Its mean value 



over the last eleven strokes is approximately zero. 
However, there is no top-bottom symmetry in the time 
evolution of the lift, and over each period individually 
it may have a non-zero average (like over the last 
period, for example). For a freely flying insect this may 
result in a slow fluctuation of the body in the vertical 
direction. 

 
Fig. 5. Mean thrust force xF  versus stroke frequency f. 

Triangular markers show 95% confidence intervals for every 
simulation point. The dashed line shows the first 

eigenfrequency f0=0.77 (8). 

Fig. 5 displays the mean thrust as a function of the 
stroke frequency f=1/tF. It was estimated by averaging 
over the last 11 strokes whereas the simulations 
spanned 13 strokes. When the frequency is small, the 
thrust increases from zero non-linearly until it reaches 
its maximum at f≈0.714 (tF≈1.4). Then it rapidly drops 
at larger frequencies. We notice that in no case the 
thrust force was exactly periodic in time, therefore the 
estimate of its mean value could vary appreciably 
depending on the interval used for averaging. For that 
reason Fig. 5 also shows, in addition to the mean thrust, 
the theoretical 95% confidence intervals for the mean 
thrust, 
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C=1.96, xF  is the average force over the last J=11 
strokes in the simulation and Fxj is an average over the 
j-th of those strokes. As frequency increases, the flow 
becomes more erratic and the mean thrust estimates less 
accurate. Nevertheless, Fig. 5 provides a strong 
evidence that the maximum thrust develops between 
f=0.65 and 0.75. For comparison, the first 
eigenfrequency of the wing 
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is shown in the same figure with a vertical dashed 
line. This agrees with the experimental results reported 
in [6] to the extent that the optimal stroke frequency is 
lower than the resonance frequency, but the difference 
between them is not as large in our numerical 
simulations as in the experiment [6]. We remind that, in 
the experiment, the Reynolds number was larger and 
the flow was three-dimensional. 

Fig. 6 shows the maximum deflection angle at the 
trailing edge, θte max=max|θte|, over the last ten strokes. 
At f=0.714, when the force is near to its maximum, the 
angle equals θte max=106.6°. At larger frequencies, the 
wing bends so much that the trailing edge points even 
more forwards, so that the fluid momentum is also 
directed forwards. Therefore thrust decreases. Note that 
θte max(f) is almost a straight line in the frequency range 
considered in our simulations. 

 
Fig. 6. Maximum deflection angle at the trailing edge θte and 

maximum value of geometric angle of attack αc versus the 
stroke frequency f. The vertical dashed line shows the first 
eigenfrequency f0=0.77 (8). The horizontal dash-dotted line 

indicates 90°. 

The geometric angle of attack of a flexible foil can 
be defined as the angle between the instantaneous 
chord line and the direction of flight. Since in our case 
the far-field velocity is zero, we use the horizontal 
direction instead, that is the direction of the propulsive 
force (see Fig. 1c): arctan(( ) /( ))c te le te ley y x xα = − − − . 
Maximum absolute values of this angle, αc max=max|αc|, 
versus frequency f are displayed in Fig. 6. Note that the 
ratio αc/θte max is bounded between 0.65 and 0.75. 

 
Fig. 7. Standard deviation of the thrust, ∆Fx, and of the lift, 
∆Fy, versus the stroke frequency f. The dashed line shows the 

first eigenfrequency f0=0.77 (8). 

In all simulations, the average value of the thrust 
force was relatively small compared to its fluctuating 
part (see, e.g., Fig. 4). It is convenient to use the 
standard deviation 

( )
max

max

21 ( ) d
F

t

x x x
F t Jt

F F t F t
Jt −

∆ = −∫  
 

(9) 



to evaluate the average magnitude of these fluctuations. 
The standard deviation of the lift, ∆Fy, is defined 
analogously. Both quantities are shown in Fig. 7 as 
functions of the stroke frequency. They increase with f. 
A faster increase of ∆Fx at higher frequencies may be 
related to the increasing deformation of the beam. 
When the frequency is very high, f≈1, the time 
evolution of the force becomes erratic and one may 
need a longer time interval to determine ∆Fx and ∆Fy 
reliably. For tF≈1.4, the intervals of xF±∆  and yF±∆  
are indicated with dash-dots in Fig. 4(a) and (b), 
respectively. 

The propulsive efficiency η0 can be defined as a ratio 
of the propulsive force coefficient to the power 
coefficient [7]. The power consists of contributions due 
to the fluid-dynamic force and the inertial force. In our 
numerical simulations, the integral inertial force of the 
wing was not calculated, but it was estimated during 
post-processing as 2 2d / dinert cgF y tµ= − , where 

0.375( )cg le te ley y y y= + − . This allowed an 
approximate estimate of the maximum propulsive 
efficiency, η0 max = 0.095 that is achieved at f ≈ 0.7f0. 

B. Two wing sections 
A series of numerical simulations have been carried 

out to explore the effect of aerodynamic interactions 
between two foils. This configuration corresponds to 
the wings of dragonflies. The motion of the forewing is 
the same as described in the previous section. The 
hindwing is placed behind the forewing as indicated in 
Fig. 2. Its geometrical and material properties are the 
same. The position of its leading edge varies in time as 
xle2=x0+d and yle2=y0+yFcos(2πt/tF+δ). We carried out 
numerical simulations for the phase shift equal to δ=0 
(in phase), 0.25π, 0.5π, 0.75π, π (antiphase), 1.25π, 
1.5π and 1.75π. The spacing between the leading edges 
is d=1.1. The amplitude is the same for both wings, 
yF=0.5, and the oscillation period is tF=1.4. The results 
of these computations are summarized in Fig. 8. It 
shows the mean thrust generated by the two wings, 

xF ∑ , the mean thrust of the forewing, 1xF , and of the 

hindwing, 2xF . All of them significantly depend on δ. 
When the two foils are in phase, δ=0, the total thrust 

xF ∑  is approximately twice as large as the thrust of a 
single foil reported above. However, the forewing 
generates a significantly larger force than the hindwing. 
This aerodynamic interference is similar to the 
'anomalous hydrodynamic drafting' observed by 
Ristroph and Zhang in experiments with a pair of 
tandem flags [10]. The total thrust xF ∑  drops to -1.96 
when the hindwing is leading (δ=0…π) and then 
restores after δ=π. When the forewing is leading 
(δ=π…2π), xF ∑  reaches its peak value of -10.6 at 
δ=1.25π. In most cases, the forewing generates larger 
thrust than the hindwing. However, this is not the case 

at δ=1.25π, when 2xF  has a sharp peak which results in 

the maximum xF ∑ . 
The observed maximum-thrust phase shift δ=1.25π is 

consistent with results of earlier studies of dragonfly 
flight [8] (since the reference considers a slow-climbing 
flight, xF ∑  should be compared to the component of 
the aerodynamic force perpendicular to the stroke 
plane). However, we find a much larger variation of 

xF ∑  with δ, which can be explained by differences in 
the modelling of wing-wake interaction. The present 
approach accounts for the dynamics of spanwise 
vortices and their interaction with the foils. On the 
other hand, the two-dimensional approximation may 
tend to overestimate the role of these structures, while 
neglecting the important effect of wing-tip vortices. 

 

A possible reason for the large propulsive force at 
δ=1.25π could be a favourable interaction between the 
hindwing and the vortices shed from the forewing. Fig. 
9 displays the vorticity field at four different time 
instants. In Fig. 9(a), two counter-clockwise vortices 
are present near the trailing edge of the forewing. 
Vortex A is the trailing-edge vortex generated during 
downstroke. Vortex B is the leading-edge vortex 
generated during the preceding upstroke. One can 
follow the time evolution of these vortices in Fig. 9(b)-
9(d). First, vortex B merges with the nearby vorticity 
sheet and then approaches the leading edge of the 
hindwing. Later, vortex A impinges the leading edges. 
Both events increase the pressure deficit at the leading 
edge, thus resulting in an extra propulsive force. Vortex 
B may also have some negative effect when it goes 
further downstream (Fig. 9d), but its strength decreases 
by that time. This wake capture process occurs at every 
half-stroke, therefore it is likely to make a significant 
contribution to the mean thrust. However, a quantitative 
estimate of the importance of this mechanism does not 
follow directly from our simulations. 

 
Fig. 8. Mean thrust force xF  of two foils versus phase shift 
δ. Dashed line indicates the thrust of a single foil. Dash-

dotted line shows the same value doubled. 



 

 
 

 
 

 
 

 

Fig. 9. Vorticity field of two foils flapping with phase 
difference δ=1.25π. Time instants are t = 14.5 (a), 14.65 (b), 

14.8 (c) and 14.9 (d). 
 

In addition to the mean forces, Table 1 shows the 
standard deviations, trailing edge deflection angles, and 
geometric angle of attack in some cases: δ=0 (in phase), 
δ=1.25π (maximum thrust) and δ=π (antiphase). The 
maximum deflection angle at the trailing edge is such 
that θte max 1> θte max single > θte max 2 when δ=0 and θte max 1< 

θte max single< θte max 2 when δ=1.25π or δ=π. Subscripts '1' 
and '2' correspond to the forewing and the hindwing, 
respectively, and θte max single=106.6° is the angle at the 
trailing edge of a single foil flapping with the same 
frequency (see Fig. 6). 

The standard deviation of the total lift, yF ∑∆ , is the 
smallest when δ=π, because the frequency of oscillation 
of 1yF  and 2yF  is equal to f. This consideration may be 
important for minimizing the body vibration in free 
flight. 

Also note that, in a free flight, it is important to 
ensure that the pitching moment acting on the body is 
zero. This is the reason why a dragonfly chooses δ≈80° 
despite some loss in the aerodynamic performance [8]. 
Meanwhile, for a micro air vehicle, it may be possible 
to design wings such that the pitching moment vanishes 
at the same δ as the propulsive force is maximized. 

The rightmost column in Table 1 shows some results 
of a numerical simulation with a different value of 
spacing between the leading edges, d=1.6, in the 
antiphase case only. The unfavorable aerodynamic 
interaction becomes weaker compared to the previous 
case, d=1.1, and the forces of both wings approach the 
values corresponding to a single foil reported in Section 
IV.A. 

 
 

d 1.1 1.1 1.1 1.6 
δ 0 1.25 π π π 

1xF  -6.00±1.04 -3.88±0.84 -3.07±0.77 -3.66±1.27

2xF  -2.49±1.07 -6.73±1.08 -3.24±1.66 -3.63±1.06

xF ∑  -8.49±1.70 -10.6±1.64 -6.31±2.11 -7.29±2.05

1xF∆  10.26 8.19 8.62 8.82 

2xF∆  11.52 12.18 10.81 10.85 

xF ∑∆  20.16 10.84 14.62 16.05 

1yF∆  25.75 21.51 21.91 20.37 

2yF∆  26.54 17.65 19.60 17.98 

yF ∑∆  51.28 25.50 19.41 14.60 

1te maxθ 112.6° 99.1° 100.5° 107.8° 

2te maxθ 89.7° 116.7° 122.6° 114.1° 

αc max1 79.2° 70° 71.4° 77.8° 
αc max2 65.2° 84.2° 89.4° 80.2° 

Table 1. Horizontal spacing between the leading edges d, phase shift 
δ, mean thrust 

xF , standard deviation of thrust 
xF∆ , and of lift 

yF∆ , 

maximum magnitude of the deflection angle θte max at the trailing 
edge, maximum magnitude of the geometric angle of attack αc max of 
the foils in the two-wing configuration. Subscripts 1, 2 and Σ stand 

for the forewing, the hindwing and the total, respectively. 
 

V. CONCLUSIONS  
A new method for numerical simulation of viscous 

incompressible fluid flows past flexible flapping wings 
has been developed. It allows modelling of single or 
multiple wing sections.  



Numerical simulations of a single flapping foil 
indicate that the maximum thrust is achieved at a stroke 
frequency slightly lower than the lowest 
eigenfrequency of the wing, which is in agreement with 
experimental findings [6]. The maximum deflection 
angle at the trailing edge equals 106.6° at the maximum 
thrust regime, and its further increase with the 
frequency results in a decrease of the mean thrust. The 
oscillatory part of the force only increases in amplitude. 

Numerical simulations of two foils show that, at the 
stroke frequency f=0.714 (which was found to 
maximize the thrust of a single foil), two foils flapping 
with a phase shift δ=1.25π generate the maximum 
propulsive force. We also observe an 'anomalous 
hydrodynamic drafting' when the foils flap in phase, 
δ=0. 

ACKNOWLEDGEMENTS 
We thank R. Godoy-Diana for enlightening 
discussions. TE and KS acknowledge financial support 
from the DFH-UFA.  
 
References 

[1]  M.S. Triantafyllou, A.H. Techet and F.S.Hover, “Review 
of experimental work in biomimetic foils,” IEEE Journal 
of Oceanic Engineering, vol. 29, pp. 585-594, 2004. 

[2]  K. Schneider, “Numerical simulation of the transient flow 
behaviour in chemical reactors using a penalisation 
method,” Computers and Fluids, vol. 34, pp. 1223-1238, 
2005. 

[3]  D. Kolomenskiy and K. Schneider, “A Fourier spectral 
method for the Navier–Stokes equations with volume 
penalization for moving solid obstacles,” Journal of 
Computational Physics, vol. 228, pp. 5687-5709, 2009. 

[4]  T. Engels, D. Kolomenskiy, K. Schneider and J. 
Sesterhenn, “Numerical simulation of the fluttering 
instability using a pseudospectral method with volume 
penalization,” Computers and Structures, in press. 

[5]  P. Angot, C.-H. Bruneau and P. Fabrie, “A penalization 
method to take into account obstacles in incompressible 
viscous flows,” Numerische Mathematik, vol. 81, pp. 497-
520, 1999. 

[6]  S. Ramananarivo, R. Godoy-Diana and B. Thiria, “Rather 
than resonance, flapping wing flyers may play on 
aerodynamics to improve performance,” Proceedings of 
the National Academy Sciences of the United States of 
America, vol. 108, pp. 5964-5969, 2011. 

[7]  C.-K. Kang, H. Aono, C.E.S. Cesnik and W. Shyy, 
“Effects of flexibility on the aerodynamic performance of 
flapping wings,” Journal of Fluid Mechanics, vol. 689, pp. 
32-74, 2011. 

[8]  A. Azuma, S. Azuma, I. Watanabe and T. Furuta, “Flight 
mechanics of a dragonfly,” Journal of Experimental 
Biology, vol. 116, pp. 79-107, 1985. 

[9]  T. Nakata and H. Liu, “A fluid–structure interaction model 
of insect flight with flexible wings,” Journal of 
Computational Physics, vol. 231, pp. 1822-1847, 2012. 

[10]  L. Ristroph and J. Zhang, “Anomalous hydrodynamic 
drafting of interacting flapping flags,” Physical Review 
Letters, vol. 101, pp. 194502 1-4, 2008. 

 


