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Numerical modeling and simulation of flapping flexible simplified insect
wing vein

Abstract

Numerical simulation of bio-inspired locomotion, especially of insect flight, has evolved
with a variety of rigid and non-rigid approximation models. To this end, mass spring
models have been known for their versatility as an efficient method with a convenience in
degrees of flexibility for solid modeling. This can be coupled with a flow solver using a
renowned Fourier spectral discretization technique. The coupling is handled by the volume
penalization method, which is able to simulate flexible and deforming obstacles.

Here, we study the fluid-structure interaction of a simplified insect wing i.e. a vein,
which represents a key structural component in flight. First, we study the properties of
our solid solver, particularly using the condition number of the Jacobian with respect to
increasing stiffness and number of mass points. We also study the complexity of our solid
solver and finally compare our mass-spring model solution with a nonlinear beam model.
We validate our fluid solver by studying the aerodynamic forces and coefficients of a circular
cylinder inside a channel. This is done using a classical Turek benchmark for flow past a
circular cylinder. Finally, we validate and discuss the difficulties of our coupled solver, for
a flexible beam attached with a circular cylinder, using the classical Turek benchmark for
fluid-structure interaction.
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Chapter 1

Introduction

Throughout history, animal locomotion has always been the subject of major interest
for scientists and engineers, especially in case of flying and swimming animals. With
the advancement in computing resources in the recent years, scientific communities are
seriously involved in applying biomimetic solutions to real technical problems. They are
always looking for more efficient and user-friendly with less noise and vibration as well
as low power consuming optimum design. This is commonly seen in nature for e.g. in
fish, birds and insects. However the complexity of actuating their motion as well as their
physical and material properties are extremely challenging.

Current researchers have now understood that the mystery behind these extremely
efficient flyer/swimmer comes from the fact that the fluid flow conditions are three di-
mensional and highly unsteady. The unsteadiness of the flow has been utilized to get a
laminarized flow and with much lower drag coefficient. Therefore, the classical fixed-wing
flight is replaced by a flexible wing subjected to undulatory motion to generate both the
lift and thrust.

The aim of this thesis is to study the fluid structure interaction of a simplified insect
wing vein. The main interest of our work is to understand the kinematics of a flapping
flexible structure and to obtain the aerodynamic forces and coefficients using our coupled
fluid and solid solver.

In chapter 2, we will discuss the dynamics of the insect wing-structure in a nutshell.
We will study the properties of our solid solver, particularly, the condition number of the
Jacobian with respect to increasing stiffness and number of mass points. Then we access
the computational complexity of our solver and finally perform a validation test.

In chapter 3, we will discuss the spectral method and the volume penalization tech-
niques, which is the building block of our flow solver. We will perform some flow simulation
and make some comparison with the classical Turek benchmark for flow past a circular
cylinder. Following this idea, we will particularly look at the mask function describing
moving and flexible obstacles in chapter 4. Finally, we will perform some simulation for
fluid-structure interaction with another Turek benchmark test for a flexible beam attached
with a circular cylinder in a channel flow.
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Chapter 2

Solid Solver

The insect wing structure is really intricate, which also involves motion with multiple
degrees of freedom as well as flexible material properties. Keeping this in mind, we use an
elastic rod as the flexible object to best represent our simplified insect wing model. This
means, our model is able to illustrate almost any initial arbitrary shape in 3D (for example
a curved line or a vein).

One of the key elements of our work is to apply a model and better understand the
flexibility of our insect wing in 3D space. Here we have the luxury of taking account
into two-dimensional flexibility. This means, we can extend our model and combine the
rod (like a vein) with a membrane in order to describe the deformation within the overall
planform area.

Due to the convenience in degrees of flexibility as well as efficient solver, we use a
mass-spring model for an elastic rod which is based on Lagrangian formulation in order to
describe the dynamics of a flexible object. This will enable us to characterize the prime
effect of flapping motion in our insect wing.

In order to describe the rod flexibility, here we use a collection of segments, which com-
prise bending deformations in both y and z direction along with the extension deformation
in x direction. This can be seen below in the figure 2.2.

Here, we define the coordinate of a lumped mass using x, y and z as the corresponding
position at the end of each segment, while θ and φ denote the bending angles in the XY
and XZ planes correspondingly. For simplicity, we have shown a 2D representation of the
rod in 3D. Due to the symmetry with the Y axis and the angle θ, we have omitted the Z
axis and the angle φ.

2.1 Governing Equations

Based on the global coordinate approach, Hung Truong developed a new model, which
allows us to independently describe the position of any arbitrary segment li using two
angles, i.e. θ and φ [8]. The advantage of this approach is that at every time step, there is
no dependency on the neighbouring segment to resolve the deflecting angles. This means
that there is no difficulty in describing the spatial angle.

Please note that here we use an independent projection for angular deformation along

2



Figure 2.1: Wing of Calliphora with veins representing an elastic rod/beam [7] c©

Figure 2.2: Rod in 3D illustrated by a 2D cantilever beam loaded by gravity. Note that
the symmetrical OXY plane is coming out of the plane
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OXY and OY Z plane rather than using the polar coordinate representation, due to the
asymmetry in defining the polar angle of the free end trajectory in the OY Z plane for our
rod. This can be seen below in the figure 4.5.

Figure 2.3: Projection of the bending deformation shown by angles in both y and z.

This ensures that the response to the external force are the same for both y and z
directions, for example when loaded by gravity (i.e. gy = gz = 0.7

√
2). For further detail,

please see [8].
However, the disadvantage of this model is that we have two singularity points, i.e.

either when both x and y are zero, or when both x and z are zero. This is due to the fact
that z is identically defined as y. Now, we can define our segment length li and the angles
θ and φ1 as follows,

li =
√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

θi = arctan2(yi − yi−1, xi − xi−1)

φi = arctan2(zi − zi−1, xi − xi−1)

(2.1)

The governing equations for describing the dynamics of our flexible body can be ob-
tained using the Lagrangian formulation.

2.1.1 Lagrangian Formulation

Lagrangian formulation is a generalization of Newtonian mechanics, which deals with en-
ergy. Unlike the Newtonian formalism where calculating the forces exerted on every object

1Please note that the arctan2 is a matlab command for tan−1. It is used instead of standard arctan
because of its advantage to include singular cases.
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requires taking sines and cosines individually, this formulation is in fact a very straight
forward method based on calculus of variation [2].

However, it is restricted to a system where the forces are purely conservative. Such
forces are derived from a potential energy function using differentiation. As a result, it is lot
more simpler and quicker to get the same equations of motion. Without going into further
details, the Lagrange equations (a.k.a. Euler-Lagrange equations) can be determined using,

d

dt

( ∂L
∂q̇j

)
− ∂L
∂qj

= Qj (2.2)

where q = [x3, ..., xn+1, y3, ..., yn+1, z3, ..., zn+1]T with j = 1, ...., 3n − 3 and Qj is the
total energy of the system. Here, the aim of our study is also to use such a simple but
conservative approach to model the dynamics of our elastic rod, where L is the difference
between Kinetic and Potential Energy.

L =

n−1∑
i=1

1

2
miv

2
i −

n−1∑
i=1

1

2
k(e)i(li − l0,i)2

− 1

2
k(b)1(θ1 − θ0,1)2 −

n−1∑
i=2

1

2
k(b)i(θi − θi−1 − θ0,i + θ0,i−1)2

− 1

2
k(b)i(φ1 − φ0,1)2 −

n−1∑
i=2

1

2
k(b)i(φi − φi−1 − φ0,i + φ0,i+1)2

(2.3)

and, v2
i = ẋ2

i+2 + ẏ2
i+2 + ż2

i+2. Since the points x1 and x2 are held as clamped boundary
condition, they do not undergo bending deformation. Therefore for i = 1, ..., n− 1, we can
redefine our segment li as,

li =
√

(xi+2 − xi+1)2 + (yi+2 − yi+1)2 + (zi+2 − zi+1)2

θi = arctan2(yi+2 − yi+1, xi+2 − xi+1)

φi = arctan2(zi+2 − zi+1, xi+2 − xi+1)

(2.4)

Therefore, after taking the derivatives of the Lagrangian L from the equation (2.3), the
Lagrangian formulation (2.2) can be decomposed and rewritten for each variable inside the
vectors q and q̇.

2.2 Numerics

Combining all the terms of equations for kinetic and potential energy ( Detailed in appendix
(A.1), (A.2), (A.3) and (A.4) ) together, we obtain a system of 3(n−1) nonlinear ordinary
differential equations, written in a compact form as,

miẍi+2 − F(x)i,int − F(x)i,ext − F(x)i,damp = 0

miÿi+2 − F(y)i,int − F(y)i,ext − F(y)i,damp = 0 i = 1, ..., n− 1

miz̈i+2 − F(z)i,int − F(z)i,ext − F(z)i,damp = 0

(2.5)
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where F(x)i,int =
∂L
∂xi+2

, F(y)i,int =
∂L
∂yi+2

and F(z)i,int =
∂L
∂zi+2

.

The internal force Fi,int depends on its location, 2 points before and 2 points after.

2.2.1 System of ODEs

In order to reduce the derivatives of second order to first order, we introduce additional
velocity variables, defined by, v(x)i = ẍ, v(y)i = ÿ, v(z)i = z̈.

This means, now, we have a system of 6n− 6 equations, given as follows,

v(x)i = ẋi+2

v(y)i = ẏi+2

v(z)i = żi+2

miv̇(x)i − F(x)i,int − F(x)i,ext − F(x)i,damp = 0

miv̇(y)i − F(y)i,int − F(y)i,ext − F(y)i,damp = 0 for i = 1, ..., n− 1

miv̇(z)i − F(z)i,int − F(z)i,ext − F(z)i,damp = 0

(2.6)

2.2.2 Temporal Discretization

For the purpose of numerical stability, we use implicit method. Keeping this in mind,
as well as in order to reduce the truncation error, we use the trapezoidal rule for the
time stepping of our numerical simulation. Therefore, the previous equation (2.6) can be
discretized as,



xk+1
i+2 − xki+2 − (uk+1

i + uki )
dt
2 = 0

yk+1
i+2 − yki+2 − (vk+1

i + vki )dt2 = 0

zk+1
i+2 − zki+2 − (wk+1

i + wki )dt2 = 0

mi(v
k+1
(x),i + uk(x),i)−

dt
2 (F k+1

(x)i,int + F k+1
(x)i,ext + F k+1

(x)i,damp + F k(x)i,int + F k(x)i,ext + F k(x)i,damp) = 0

mi(u
k+1
(y),i + uk(y),i)−

dt
2 (F k+1

(y)i,int + F k+1
(y)i,ext + F k+1

(y)i,damp + F k(y)i,int + F k(y)i,ext + F k(y)i,damp) = 0

mi(u
k+1
(z),i + uk(z),i)−

dt
2 (F k+1

(z)i,int + F k+1
(z)i,ext + F k+1

(z)i,damp + F k(z)i,int + F k(z)i,ext + F k(z)i,damp) = 0

(2.7)
for i = 1, ..., n − 1. Here dt corresponds to the time step and the index k denotes the

time level, with tk = kdt Therefore, we have (6n− 6) nonlinear equations to be solved.

2.2.3 Jacobian Matrix

For the purpose of illustration, we define the vector-valued function f(u) to denote the
system of equations (2.7). The Jacobian matrix is the matrix that consists of all the
derivatives of f with respect to each corresponding components of the phase vector ~u. The
Jacobian matrix is a block matrix, where most of the off diagonal entries are zero. The
pattern of the matrix is illustrated in figure 2.4.

Here, we can notice that the matrix can be further simplified into four blocks. Beside
the block at the bottom left, the entries in the three blocks are all diagonal. These 3 blocks
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Figure 2.4: Pattern of the Jacobian matrix illustrating sparsity and block structure

have identity matrix entries which is evident if (considering its derivatives,) we look at the
equations (2.7). Only the block at the bottom left consist of pentadiagonal structure. This
is due to the evaluated derivatives of Fint, which not only depend on the corresponding
location or its nearby points but also on the other axis in the plane of rotation.

2.3 Properties of the solver

Before going any further into validation of our model, we will first look at the plausibility of
our solution. This is done by checking the condition number of the Jacobian to ensure that
there is no likelihood of singularity. Then we will examine the computational efficiency of
our solver for an increasing number of mass points.

Here, we use Matlab for our computation. This allows us to utilize the elegant feature
of rapid prototyping programming techniques along with its inbuilt function resources.
We also have the luxury of using the graphical tool for visualization, which helps us to
comfortably analyze the data.

Please note that, in case of multiple numbers of operation, Matlab will have a con-
siderable drawback regarding the memory consumption, consequently, slow execution time
compared to the performance of other programming languages, such as, fortran. Neverthe-
less, we can use it as a building block to briefly investigate the behaviour of our mass-spring
system.

2.3.1 Conditioning of the Jacobian

While performing matrix computation, we should be very careful if the matrix is stiff, i.e.
ill-conditioned. Although, the matrix can be numerically non-invertible, we might still get
an answer in Matlab. This is when the condition number comes into play. The condition
number κ can be defined as the ratio of largest eigenvalue to the smallest eigenvalue of
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a matrix. Since, the solution of our linear system of equations requires the computation
of the Jacobian matrix, it is inescapable to make some analysis regarding its condition
number.

No of Size of Condition Condition Condition
Mass Jacobian number for number for number for
Points Matrix ke = 50, 000 ke = 100, 000 ke = 200, 000

32 186× 186 527,168.64 705,920.26 1,752,600.66
64 378× 378 6,301,043.05 6,389,968.51 6,571,857.76
128 762× 762 60,404,887.40 60,256,883.66 60,968,369.21
256 1530× 1530 530,612,724.29 532,383,835.99 499,121,585.93
512 3066× 3066 4,606,965,436.28 3,850,664,611.25 4,375,584,326.29

Table 2.1: Condition Number of the Jacobian for ke = 50, 000, ke = 100, 000 and ke =
200, 000 for different mass points

As mentioned above in table 2.1, we choose 3 different values of axial stiffness ke. We
can see in logarithmically scaled plot of the condition numbers for these 3 different stiffness
values of our Jacobian matrices in the figure 2.5 below.

Figure 2.5: Condition number of the Jacobian matrix as a function of varying mass points
for 3 different axial stiffness values.

When the condition number equals infinity, then the matrix is not invertible or singular.
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Since, infinity is not meaningful in computing, therefore, in matlab, it is generally assumed
that whenever the condition number κ is greater than or approaching 1015, then the matrix
is problematic or ill-conditioned.

As shown in the figure 2.5, we can observe that, for smaller number of mass points,
the condition number increases for increasing stiffness values. However, for larger number
of mass points, the condition numbers tends to be approximately similar (i.e. of the
same order). This is because as one increases the number of mass points, the mass-spring

segments tend to be more stiff. This can be verified by the relation k =
EA

L0
in case of

linear elasticity.
Using linear fitting, we are able to find the power law relation i.e. κ ∝ Cn3.1 for axial

stiffness ke = 105 and a time step of dt = 10−3. Note that for n = 512, we are already
approaching the condition number of the order 109. Inevitably, we can extrapolate, for
example, that we get a condition number κ = 2.0141× 1013 as we increase the mass points
to n = 8192.

Using larger time steps, for example, dt = 10−2, while using the same number of mass
points implies much larger condition numbers. This is illustrated in the table 2.2

No of Size of Condition
Mass Jacobian number for
Points Matrix ke = 100, 000

32 186× 186 1,156,286.06
64 378× 378 9,035,572.09
128 762× 762 70,029,681.81
256 1530× 1530 714,462,652.81
512 3066× 3066 14,672,886,774.30

Table 2.2: Condition number of the Jacobian for ke = 100, 000 and dt = 0.01 for a different
number of mass points

For same number of mass points n = 8192, by doing extrapolation, we get the condition
number κ to be 1.6507 × 1014. Hence, it can be suggested for the user not to use more
mass points beyond this value, especially, we have to be very careful when reducing the
time steps. Also, the reason is that the block at the bottom left (see figure 2.4), has higher
value than the whole Jacobian and it is always growing rapidly. Nevertheless, for the entire
insect wing geometry, we just need the number of mass points within the range of 1024,
for our mass-spring model.
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2.3.2 Iterative Algorithm

Start

Initialize
vector u0 = u

Calculate
Jacobian J

Evaluate
du = J−1f(u0)

Update u1 =
u0 − du

If |u1 − u0|max <
tol

Convergence.
Assign u = u1

Update u0 = u1

If Iteration ≥ 20
Solution is

not converged

Stop

Exit Loop

yes

no

yes

no

Here we define the phase vector ~u = [~x ~y ~z ~u ~v ~w]T to include all the 6 unknowns
with each having n − 1 (unclamped) mass points. In order to solve the above 6n − 6
nonlinear system of equations (2.7) symbolized in the form of f(uk+1) = 0, we use the
Newton-Rhapson algorithm.

Finally we get the positions and velocities of each mass points at the new time steps
tk+1. The algorithm is illustrated by the flow chart above.
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2.3.3 Computational Efficiency

In order to investigate the computational efficiency for our mass-spring model solver, we
will briefly look at the solver time specified by the profile summary of our program. Then,
we will also analyze the computational complexity using the CPU time evaluated as a
function of the number of mass points in logarithmic scale.

In our mass-spring solver, we use the routine CN Implicit straight beam.m as our
main program. We can notice that the function constructFja.m, contributes to the most
amount of execution time, because it calculates the Jacobian terms of internal forces
F(x)i,int, F(y)i,int and F(z)i,int or in other words, the derivatives of the equations (A.2),
(A.3) and (A.4). However, this is not the case for larger number of mass points, which
can be seen in the 2.3 listed below. This is because, as we increase the number of mass
points, the main routine CN Implicit straight beam.m, which contains the variable for
convergence criteria, uses the inversion of the Jacobian matrix. Hence, this will consume
the major amount of operation time as we increase the number of points.

We will now look at the computational complexity i.e. the CPU time for different cases
of mass points. We will also compare the CPU time for a sparsed-solver and a non-sparsed
solver, (i.e. when we skip the sparse storage organization) for our Jacobian matrix. This
is shown in the table 2.3 below.

Computational Complexity

Number of CPU Time [s] CPU Time [s]
Mass Points (sparsed solver) (non-sparsed

solver)

8 32.514 30.042
16 37.006 36.388
32 46.888 50.297
64 81.209 104.936
128 216.240 359.969
256 1142.829 2014.8
512 3511.771 10166.194
1024 16337.062 53284.245

Table 2.3: CPU time for number of mass points of the mass-spring model.

It is evident that these complexity plots figure 2.6 show a nonlinear behavior. Please
note that these plots in figures 2.6 are in logarithmic scale.

Like we mentioned in the table 2.1, we can also visually notice the contrast of CPU
time in figure 2.6, once we remove the sparse storage for our Jacobian. The complexity is of
higher order polynomial for the non-sparsed matrix case. This result verifies the advantage
of using the Sparse function for efficient storage and solving linear systems in Matlab.

It is clearly noticeable that these nonlinear logarithmic plots of the computational
complexity show an approximately linear behaviour for n = 128 or above. This is because
at smaller number of mass points, the function calls in our program also contribute to the
investment of our CPU time. This also means, the CPU time for larger number of mass
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Figure 2.6: Complexity comparison for sparsed and non-sparsed Jacobian matrix

points, is mostly dominated by the computation of system of equations.
If we extrapolate using the linear fitting or the power law relation, (i.e. the Complexity

∝ Cn2) we can estimate, for example, the CPU time for n = 4096 to be approximately
205990 seconds or 57.2204 hours (i.e. 2 days 9 hours and 15 minutes). For the non-sparsed
solver, we get the CPU time to be approximately 156390 seconds or 434.41 hours (i.e. 18
days 2 hours and 30 minutes).

Consequently, this means our model is not computationally efficient. We have to be
really aware of CPU time while coupling this solid solver with the fluid solver. Nevertheless,
less number of mass points are sufficient to be able to represent the overall insect wing.

2.4 Validation

It is essential to perform a validation of our mass-spring model. We will do this by analyzing
the solution for our model with the collection of data from the nonlinear beam model
mentioned in [5]. We will, then check the sensitivity of our mass-spring model with respect
to the number of grid points. This is done by making some comparison with an increasing
number of mass points.

2.4.1 Convergence

Since the nonlinear beam is only chord-wise flexible (i.e. 1D flexibilty), we set the gravity
load in z-direction to be gz = 0, for our mass spring solver. For the given material properties
of mass m = 0.0571L/n, flexural stiffness EI = 0.0259 and axial stiffness ke = 103, we

12



compare the deflection of our mass-spring model with the nonlinear beam solution from
Thomas Engels [5]. We found that the absolute relative error is 0.01% in the y direction
at the free end of the beam.

Figure 2.7: Comparison of the deflection between the mass-spring model and the nonlinear
beam model
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Chapter 3

Fluid Solver

The governing equations to describe a fluid flow is given by the Navier-Stokes equations.
Here we discuss the techniques that are used to solve the incompressible Navier-Stokes
equation numerically. The difficulty lies in satisfying the no-slip boundary condition on
a complex geometry with moving solid obstacle and also to ensure the divergence-free
condition.

Thus we use volume penalization method, which uses the immersed boundary approach,
which includes the interior of the solid obstacles as computational domain. Therefore, the
model equation are given as,

∂tu+ ω × u+∇Π− ν∇2u = 0 (3.1)

∇ · u = 0 (3.2)

where, u is the velocity, ω = ∇ × u is the vorticity and Π = p + 1
2u · u is the total

pressure. The system is completed with initial conditions u(x, 0) = u0 (in the fluid domain
Ωf ). and u = uS (at the boundary ∂Ω), where uS is the solid velocity.

3.1 Volume Penalization Method

The idea of Volume Penalization Method is to replace the solid obstacle by a porous
medium with small permeability. The domain definition of the problem is demonstrated
using the simplified figure 3.1.

The model equation can be, thus, expressed as Penalized Navier-Stokes Equation,

∂tu+ ω × u = −∇Π + ν∇2u− χ

Cη
(u− uS) (3.3)

having an additional forcing term. With an initial condition,

u(x, t = 0) = u0 (3.4)

The geometrical information is stored by the mask function, where,

χ(xi, t) =

{
0, if x ∈ Ωf .

1, if x ∈ Ωs.
(3.5)
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Figure 3.1: The computational domain Ω = Ωf ∪ Ωs

For Cη → 0 the solution of the penalized Navier–Stokes equations (3.3)-(3.5) approach
towards the exact solution of the Navier–Stokes equation [1], [4]. This means we model
the above equations (3.3)-(3.5) using the penalization term (in the RHS of the equation
(3.3)) in order to satisfy the no-slip boundary conditions.

To fulfill the incompressibility constraint equation (3.2), we take the divergence of
equation (3.3). Thus, we obtain a Poisson equation for the pressure as,

∇2Π = ∇ ·
(
− ω × u− χ

Cη
(u− uS)

)
(3.6)

If we disregard the pressure, viscous and the nonlinear terms Cη can be directly inter-
preted as the relaxation time [6]. The reason for chosing this formulation has to do with
its conservation properties, particularly for momentum and energy (for more, see [11],pp.
210).

3.2 Spectral method

Since, we are dealing with relatively low Reynolds number flow for our insect wing, we use
direct numerical simulation (i.e. without Turbulence Modeling). So, the obvious choice for
domain discretization is the Spectral Method.

The idea of Spectral methods is to represent the solution and the spatial derivatives
using a sum of certain trial or basis functions, for example, a generalized Fourier Series or
sometimes Chebyshev polynomials, Legendre polynomials etc and then to determine the
coefficients in the sum to satisfy the differential equations as much as possible.

For example, a field variable can be expressed in terms of the Fourier approximation,

u(~x, t) =
∑
k

ûk(~k, t)e
ikx

(3.7)

where, ûk is the Fourier coefficient,
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ûk(~k, t) =
1

2π

∫ 2π

0
u(~x, t)e−ikxdx (3.8)

Since, this is in continuous setting, we have trouble representing in computer. Thus,
we take a finite number of nodes for truncation. Therefore, we use the discrete Fourier
series and then compute our coefficients,

ûk =
1

N

N−1∑
n=0

u

(
n2π

N

)
e−ik2πkn/N (3.9)

With ~k = (kx, ky). The discretization is uniform in space and is truncated at kx =
−Nx/2, kx = Nx/2 + 1 and ky = −Ny/2, ky = Ny/2 + 1. Therefore the discrete Fourier
Series representation for the equation (3.7) is,

uN (x) =

N/2−1∑
k=−N/2

ûke
2πikx (3.10)

The advantage of this representation is that, due to its trigonometric or exponential
form, the basis function remains the same (or simply alternates in trigonometric form).
The gradient of u is computed by multiplying the û by i~k.

Therefore, this will end up in a simple algebraic multiplication. Using Fast Fourier
Tranform we can move between both domains. To sum up, Spectral Methods solve differ-
ential equations (like the Navier Stokes Equations) as a Fourier polynomial approximation
with the help of the Fast Fourier Transform (FFT).

To solve the penalized Navier–Stokes equations we employ the classical Fourier pseu-
dospectral method, which is very precise for flows with periodic boundary condition [Canuto
et al.,1988]

3.2.1 Fourier Pseudo-Spectral Discretization

The pseudo-spectral method is special technique of discretizing the nonlinear terms in the
spectral form of the Navier–Stokes momentum equation (i.e. N̂(ω)), where,

N(ω) = −ω × u− χ

Cη
(u− uS) (3.11)

This term is computed by the pseudo-spectral method, which is primarily done by not
evaluating the convolution directly. And the velocity induced by vorticity can, thus, be
represented as,

u(x, t) = −
∑
k

ik⊥

k2
ω̂k(t)e

ikx + u∞ (3.12)

Here, the convection term and the penalization term, which contain products are com-
puted using collocation in physical space using inverse FFT operation and then, subjected
to FFT for calculation in Fourier space. This is done in order to reduce the computational
time taken by the convolution operation in Fourier space.
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The product of the Fourier transforms in the nonlinear expression will yield non-resolved
terms. This will produce errors, which are called aliasing errors. They are removed by
de-aliasing, which corresponds to the truncation of the corresponding wave numbers. For
this, 2/3 rule is applied by discarding all Fourier coefficients at each time step for which,

k >
2

3
kmax (3.13)

The 2/3 rule for vorticity can be summerized as,

ω̂(~k) =

ω̂(~k) for
(

3kx
2Nx

)2
+
(

3ky
2Ny

)2
< 1.

0 for
(

3kx
2Nx

)2
+
(

3ky
2Ny

)2
> 1.

(3.14)

For details we refer to the book of Canuto et al. [3].

3.2.2 Time Discretization

For our model, here, we use the classical 2nd order Runge-Kutta time stepping scheme,
which can be given by,

un+1 = un + (a1k1 + a2k2)∆t (3.15)

where, the coefficients a1 = 1/2 and a2 = 1/2 yield,

un+1 = un + (
1

2
k1 +

1

2
k2)∆t (3.16)

with, k1 = f(tn, un) (3.17)

k2 = f(tn + ∆t, un + ∆t) (3.18)

Note this is an exclusively explicit scheme. Other semi-implicit schemes like the Adams-
Bashforths method [13] have also been used.

3.3 Hydrodynamic forces

For the volume penalization method, an explicit way to determine the forces F (i.e. lift
and drag) on the body immersed in a fluid is used. It is proven in [1] that, instead of
computing the surface integral of the stress tensor, (for a fixed obstacles, i.e. uS = 0,) we
have,

F =

∫
∂ΩS

σnds = − lim
Cη→0

1

Cη

∫
ΩS

χudV (3.19)

where, σ is the fluid stress tensor, n is the outward unit normal vector of the surface
∂ΩS . Please note that the penalized velocity for moving obstacle includes the solid velocity,
i.e. uS 6= 0 and the unsteady correction term [9]. Therefore,

F = − lim
Cη→0

1

Cη

∫
ΩS

χ(u− uS)dV +
d

dt

∫
ΩS

uSdV (3.20)

for the moving obstacle. This formula will be used in chapter 4.
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3.4 Validation study: Flow past circular cylinder

In order to compare the solution of the incompressible Navier–Stokes equations, we use
the Turek Benchmark computations for 2D laminar flow around a cylinder. For detailed
evaluation and comparison with a reference experiment the results are given in [12].

Figure 3.2: Geometrical setup for flow past a circular cylinder

To avoid the periodicity, we have extended the computational domain so that we can
insert the so-called feeding inflow zone. Thus we can impose a Poiseuille velocity profile,
which is necessary for the benchmark.

To begin, we investigate the forces and coefficients for a circular cylinder with 3 different
grid resolutions and compare the velocity profile at the inlet. In the end, we compare the
drag coefficients for some more grid resolutions.

3.4.1 Results

The input parameters and the dimensions are specified below in the table 3.1, where, Level
1 = 900×180, Level 2 = 1000×200 and Level 3 = 1100×220. Note that the feeding inflow
length is Lin = 0.7520, which is added to a comparable domain length in x direction, i.e.,
exactly as the domain length in x direction of the reference Turek benchmark.

Resolution Parameters Values

Level 1
nx 900
ny 180

Level 2
nx 1000
ny 200

Level 3
nx 1100
ny 220

Table 3.1: Number of grids for three different resolution level
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Parameters Symbols Units Values

Inlet velocity U∞
m
s 0.694444

Mean flow velocity Ū m
s 1.0

Maximum time level Tmax s 15.0

Domain length in ’x’ Lx m 2.9520

Domain length in ’y’ Ly m 0.5904

Fluid kinematic viscosity ν
m2

s
0.001

Fluid Density ρf
kg

m3
1.0

Reynolds number Re - 100

CFL number CFL - 0.25

Permeability Cη - 0.001

Thickness of the wall hwall m 0.0902

Diameter of the cylinder dcyl m 0.1

’x’ position of the cylinder x0c m 0.9520

’y’ position of the cylinder y0c m 0.2902

Table 3.2: Input parameters for the flow past a circular cylinder

From table 3.3, we can clearly notice that the lower and upper bound of the maximum
lift and drag coefficients are within the range found in the benchmark reference (See [12]
table 4), i.e. 2.8920 to 4.7330 for maximum drag coefficients and 0.5658 to 2.0600 for
maximum lift coefficients. Please note that we have used the same scale magnitude for
forces and coefficients to see the variation. The vorticity field for 3 level of grid resolutions,
shown in figure(3.3)-(3.5), are similar as expected. We can also observe that the velocity
profile is parabolic with the maximum value approaching Umax = 1.5 for each 3 cases (see
figure (3.5)).

In table 3.4, we can, particularly, observe that, as we increase the grid resolution
from 400 × 80 to 1100 × 220, the drag coefficients are sinusoidally damping to a value of
Cd = 3.27, which is near the frequently occurring value of drag coefficient in the benchmark,
i.e. Cd = 3.22. The Cd value depends on the drag force Fd, which inturn depends on mask
function χ. Since the mask function χ is discontinuous, we need a smoothening layer to
get the resulting drag coefficient value refined. Also, we should note that if we increase the
grid resolution further, we should be aware of the relation with the permeability value, i.e.
Cη ∝ (∆x2).
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Output Level 1 Level 2 Level 3

Umax [ms ] 1.4997 1.4994 1.5

F̄d [N ] 0.169184 0.162821 0.163524

Fdmax [N ] 0.173800 0.166831 0.167472

Fdmin [N ] 0.154820 0.150131 0.151064

C̄d 3.383686 3.256428 3.270474

Cdmax 3.475995 3.336625 3.349443

Cdmin 3.096412 3.002624 3.021291

F̄l [N ] -0.000698 -0.000379 -0.000299

Flmax [N ] 0.058586 0.052441 0.052298

Flmin [N ] -0.059995 -0.053593 -0.053362

C̄l -0.013952 -0.007580 -0.005982

Clmax 1.171720 1.048816 1.045971

Clmin -1.199907 -1.071858 -1.067240

Table 3.3: Results for the flow past circular cylinder with Level 1 = 900 × 180, Level 2
= 1000× 200 and Level 3 = 1100× 220

nx 400 600 800 900 1000 1100

ny 80 120 160 180 200 220

F̄d [N ] 0.168080 0.173429 0.166651 0.169184 0.162821 0.163524

C̄d 3.361607 3.468580 3.333011 3.383686 3.256428 3.270474

Table 3.4: Mean drag and mean drag coefficient for the flow past a circular cylinder with
increasing grid resolution

Please note that the drag parameters are averaged over the time interval between
t = 0.2s and t = 15s, so that we exclude the impulsive oscillations at the beginning.
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Level 1: Drag as a function of time Level 1: Lift as a function of time

Level 2: Drag as a function of time Level 2: Lift as a function of time

Level 3: Drag as a function of time Level 3: Lift as a function of time
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Level 1: Cd as a function of time Level 1: Cl as a function of time

Level 2: Cd as a function of time Level 2: Cl as a function of time

Level 3: Cd as a function of time Level 3: Cl as a function of time
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Figure 3.3: Level 1: Vorticity field after 15 seconds

Figure 3.4: Level 2: Vorticity field after 15 seconds

Figure 3.5: Level 3: Vorticity field after 15 seconds

Figure 3.6: Level 1: Velocity profile at the inlet
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Using the lift coefficient curve, we can check the period of vortex shedding, and thus
the frequency f . Using this, we can calculate the Strouhal number by the relation,

St =
fD

ū
(3.21)

We found that the Strouhal number to be St = 0.2703 for 900 × 180, which is within
the range of 5.8% near the reference value of St = 0.287 in [12]. This means that we can
now reliably enhance our work and move to fluid structure interaction.
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Chapter 4

Fluid-Structure Interaction

Insect wings are shape morphing and compliant by nature. Its complexity is also charac-
terized by a cross-section with corrugated configuration. Moreover, flapping motion and
deforming phenomena are omnipresent in insect flight.

In this chapter we will look at how the fluid solver and the solid solver are coupled to
obtain a more realistic and oscillatory reponse of a simplified vein of an insect wing. We
use the Turek benchmark for Fluid-Structure Interaction (FSI) [14] to validate our coupled
solver.

4.0.1 Mask function for moving and flexible solid obstacles

In order to describe a solid obstacle inside a fluid domain, we directly use the mask function
according to the equation (3.5). However, large oscillations can be found in hydrodynamic
forces for moving obstacles using a Fourier pseudo-spectral method [9]. A smoothened
mask function is instead used, which relies on the signed distance function in order to
capture the translation of the obstacle [5].

χ(x, t) =


0, δ ≤ −h.
1
2(1 + cos(π δ+hh )), −h ≤ δ ≤ +h.

1, δ ≥ +h.

(4.1)

where, δ(x, t) = ‖x−x0(t)‖−R0 , R0 is the radius centered around x0 and h is the half
thickness of the smoothing layer. The external or the fluid forces are one of the forces that
influence the solid deformation. Since, the division of the segments of solid obstacles is
independent of the entire domain discretization, we use pressure interpolation to evaluate
the pressure jump across the beam using,

[p]± =

∫ r=btop(s)

r=bbot(s)
(ptop(s)− pbottom(s)) (4.2)

where, s is the chordwise position of the deformed mean. The function bbot and btop
takes into account of non-rectangular shapes. For more details, see [5] [10].
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4.1 Coupling Algorithm

The coupling between the fluid and structure is attained by the construction of the mask
function χ and solid velocity field uS , and the interpolation of the pressure on the solid
surface. This is described by a simple flow chart below.

Start

Fluid & Solid
Initial Conditions

Define Mask
Beam χb

Add Mask
Cylinder χ

Choose time
step dt =

min(CFL, η)

Compute velocity
u and pressure p

Interpolate
pressure jump

Compute beam
position x and y

If time = Tmax

Stop

Yes

No
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4.2 Turek Benchmark

We are now in a position to study the Turek benchmark for fluid-structure interaction.
The domain dimension in x-direction, is slightly increased as we have seen for the circular
cylinder in figure (3.2). A flexible beam of length Lb = 0.35m has been added with a
thickness of tb = 0.02m. Note that the feeding inflow length here is Lin = 0.1771m.

Figure 4.1: Geometrical setup for a circular cylinder with a beam attached for the FSI
simulation

4.2.1 Results

The input parameters for a flow past a circular cylinder with a flexible beam at Re = 200,
i.e. based on Turek’s benchmark for FSI3 [15], can be summarized in the below table 4.1.

Parameters Symbols Units Values

Inlet velocity U∞
m

s
0.694444

Mean flow velocity Ū
m

s
2.0

Maximum time level Tmax s 20.0

Domain length in ’x’ Lx m 2.6771

Domain length in ’y’ Ly m 0.5904

Fluid kinematic viscosity ν
m2

s
0.001

Fluid Density ρf
kg

m3
1000

Reynolds number Re - 200

CFL number CFL - 0.1

Permeability Cη - 0.001
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Thickness of the wall hwall m 0.0902

Diameter of the cylinder dcyl m 0.1

’x’ position of the cylinder center x0c m 0.3771

’y’ position of the cylinder center y0c m 0.2902

Position of the beam in ’x’ x0 m 0.4271

Length of the beam Lb m 0.35

Thickness of the beam tb m 0.02

Table 4.1: Input parameters for the flow past a circular cylinder attached with a flexible
beam

From table (4.2), we can clearly see that the upper and lower bound of both the
minimum and maximum drag and lift forces for level 2 are more reasonable than level 1
with respect to the range specified in the benchmark. When the time level is above 3.5
seconds (see figure (4.2) and (4.3)), level 2 shows more accuracy, when we compared to
the benchmark [14], i.e. for example the maximum drag is 487.81 and the minimum drag
is 432.79. The minimum and maximum displacement in the benchmark computations
is between −0.03345 and 0.03637, which seems plausible even with such low resolution,
though minimum displacement for level 1 does not agree for the entire time interval we
considered. (Note that the time interval that we choose to calculate the maximum value
is between t = 1.1 seconds to t = 4.375 seconds, i.e. the tend. Also the grid resolution in
the benchmark is finer compared to our test case).

The frequency of oscillation of the beam is calculated graphically using the displacement
curve, using the relation with period T , i.e. f = 1/T . We can notice that for level 2, the
frequency is 5.555 Herz which is almost similar compared with the benchmark, i.e. 5.47
Herz.

Output Level 1 Level 2

Fdmax [N ] 1107.2131 718.9604

Fdmin [N ] 429.7072 356.4436

Flmax [N ] 505.6752 276.0013

Flmin [N ] -542.5533 -329.7791

ydmax [m] 0.032246 0.039913

ydmin [m] -0.014062 -0.034417

Table 4.2: Results for the flow past circular cylinder attached with a flexible beam with
Level 1 = 325× 72 with ns = 42 and Level 2 = 650× 144 with ns = 85
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Figure 4.2: Drag as a function of time Figure 4.3: Lift as a function of time

Figure 4.4: Displacement as a function of time FSI simulation

Figure 4.5: Vorticity field of FSI simulation for level 2 at 4.37 seconds

Note that the color table for figure (4.5) is the same as in figure (3.3).
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Chapter 5

Conclusion

Numerical simulation of a flexible beam representing a simplified wing was the core of
this work. The beam is immersed in a viscous fluid and is subjected to external forces
exerted by the fluid, while the flow field additionally experiences feedback from the solid
at each instance in time. The subject is studied in three different chapters with an aim of
understanding the fluid-structure interaction.

Followed by an introduction and motivation in the first chapter, we studied the prop-
erties of a mass-spring model, particularly, the condition number of the Jacobian matrix
in Chapter 2. We found that the condition number κ increases for increasing number of
mass points. Interestingly, κ increases if the axial stiffness value is at the smaller number
of mass points, while it tends to be approximately similar for larger number of mass points.
We also studied the computational complexity of the mass-spring model and realized the
benefit of using the sparse solver in Matlab. Although the complexity C is found to be
nonlinear with C ∝ n2, fortunately, it is sufficient to model the insect wing with limited
number of mass points to obtain reasonable accuracy. Using the power law relation for
the CPU time, we extrapolated the CPU time for larger number of mass points. We also
found the deflection at the free end to be in good accuracy compared to nonlinear beam
model.

In Chapter 3, we used the volume penalization method with spectral method’s dis-
cretization for flow simulation. We performed a benchmark test for a flow past a circular
cylinder with channel walls. We obtained a reasonable accuracy for lift and drag coef-
ficients. The results of drag coefficients, are sinusoidally converging to a mean value of
Cd = 3.27, as we increased the number of grid points. We also looked at the Strouhal
number and found it to be within the range of 5.8 % with respect to reference computa-
tions. Finally, in Chapter 4, we studied the fluid-structure interaction and validated the
Turek benchmark for FSI3. We found that the maximum drag and lift for resolution level
2, i.e. 650× 144 to be near the values provided in the benchmark. The frequency of oscil-
lation for level 2 is almost similar to the benchmark. And the displacements value for both
levels 1 and 2 are near the range found in the benchmark for fluid structure interaction.
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In this fascinating field of bio-inspired propulsion, fluid-structure interaction of the flex-
ible wing is really a challenging and interdisciplinary area. There are many open questions.
It will be interesting to study the two dimensional flexibility in a three dimensional fluid
domain and the future work is associated with computations with better resolution.
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Appendix A

Lagrangian Formulation

A.0.1 Kinetic Energy

We get the term for Kinetic Energy as:

d

dt

( ∂L
∂ẋi+2

)
= miẍi+2;

d

dt

( ∂L
∂ẏi+2

)
= miÿi+2;

d

dt

( ∂L
∂żi+2

)
= miz̈i+2; (A.1)

A.0.2 Potential Energy

And the term for Potential Energy is given as:

∂L
∂xi+2

=− k(e)i(li − l0,i)
xi+2 − xi+1

li
+ k(e)i+1(li+1 − l0,i+1)

xi+3 − xi+2

li + 1

+ k(b)i(θi − θi−1 − θ0,i + θ0,i−1)
yi+2 − yi+1

(xi+2 − xi+1)2 + (yi+2 − yi+1)2

− k(b)i+1(θi+1 − θi − θ0,i+1 + θ0,i)

(
yi+3 − yi+2

(xi+3 − xi+2)2 + (yi+3 − yi+2)2

+
yi+2 − yi+1

(xi+2 − xi+1)2 + (yi+2 − yi+1)2

)
+ k(b)i+2(θi+2 − θi+1 − θ0,i+2 + θ0,i+1)

yi+3 − yi+2

(xi+3 − xi+2)2 + (yi+3 − yi+2)2

+ k(b)i(φi − φi−1 − φ0,i + φ0,i−1)
zi+2 − zi+1

(xi+2 − xi+1)2 + (zi+2 − zi+1)2

− k(b)i+1(φi+1 − φi − φ0,i+1 + φ0,i)

(
zi+3 − zi+2

(xi+3 − xi+2)2 + (zi+3 − zi+2)2

+
zi+2 − zi+1

(xi+2 − xi+1)2 + (zi+2 − zi+1)2

)
+ k(b)i+2(φi+2 − φi+1 − φ0,i+2 + φ0,i+1)

zi+3 − zi+2

(xi+3 − xi+2)2 + (zi+3 − zi+2)2

(A.2)

Please note that we have 8 terms for arbitrary xk(= xi+2). However, at the boundary
we have no k(e)n and also k(b)n = 0, which means that
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• ∂L
∂xn

has 6 terms, because 2 terms associated with θ and φ, will disappear.

• ∂L
∂xn+1

has 3 terms, because 1 term associated with l and 4 terms associated with θ

and φ, will disappear.

∂L
∂yi+2

=− k(e)i(li − l0,i)
yi+2 − yi+1

li
+ k(e)i+1(li+1 − l0,i+1)

yi+3 − yi+2

li + 1

+ k(b)i(θi − θi−1 − θ0,i + θ0,i−1)
xi+2 − xi+1

(xi+2 − xi+1)2 + (yi+2 − yi+1)2

− k(b)i+1(θi+1 − θi − θ0,i+1 + θ0,i)

(
xi+3 − xi+2

(xi+3 − xi+2)2 + (yi+3 − yi+2)2

+
xi+2 − xi+1

(xi+2 − xi+1)2 + (yi+2 − yi+1)2

)
+ k(b)i+2(θi+2 − θi+1 − θ0,i+2 + θ0,i+1)

xi+3 − xi+2

(xi+3 − xi+2)2 + (yi+3 − yi+2)2

(A.3)

∂L
∂zi+2

=− k(e)i(li − l0,i)
zi+2 − zi+1

li
+ k(e)i+1(li+1 − l0,i+1)

zi+3 − zi+2

li + 1

+ k(b)i(φi − φi−1 − φ0,i + φ0,i−1)
xi+2 − xi+1

(xi+2 − xi+1)2 + (zi+2 − zi+1)2

− k(b)i+1(φi+1 − φi − φ0,i+1 + φ0,i)

(
xi+3 − xi+2

(xi+3 − xi+2)2 + (zi+3 − zi+2)2

+
xi+2 − xi+1

(xi+2 − xi+1)2 + (zi+2 − zi+1)2

)
+ k(b)i+2(φi+2 − φi+1 − φ0,i+2 + φ0,i+1)

xi+3 − xi+2

(xi+3 − xi+2)2 + (zi+3 − zi+2)2

(A.4)

Since,
∂L
∂yi+2

6= f(φ) and
∂L
∂zi+2

6= f(θ), the 3 associated terms vanish compared to the

equation (A.2). This means we should have 5 terms as shown above in equation (A.3) and
equation (A.4). Please note that

• ∂L
∂yn

has 4 terms, because 1 term associated with θ, will disappear.

• ∂L
∂zn

has 4 terms, because 1 term associated with φ, will disappear.

• ∂L
∂yn+1

has 2 terms, because 1 term associated with l and 2 terms associated with θ

will disappear.

• ∂L
∂zn+1

has 2 terms, because 1 term associated with l and 2 terms associated with φ

will disappear.
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