
Three-dimensional simulations of �apping
�iers using a multiresolution approach
Thomas Engels

Three-dimensional simulations of
flapping fliers using a

multiresolution approach

Thomas Engels

École Normale Supérieure
Technische Universität Berlin

Report

2018

2 CONTENTS

Contents

1 Introduction 3

2 Governing equations 6

2.1 A brief look at characteristics 8

3 Numerical solution on adaptive grids 10

3.1 Fundamental ideas of the implementation 10

3.2 Multiresolution algorithm . 11

3.3 Discretization in space and time 11

3.4 Choice of numerical parameters 12

3.5 Ghost nodes synchronization 14

4 Validation and testing 16

4.1 Wavelet compression test . 16

4.2 2D: Three vortices problem . 16

4.2.1 Equidistant computations 20

4.2.2 Adaptive computations 23

4.3 2D: flow past a cylinder . 29

4.3.1 Choice of parameters for the sponge 29

4.3.2 Validation for Re = 40 33

4.4 3D: Propagation of a pressure blob 39

4.5 3D: performance considerations 41

5 Application to insects 46

5.1 Performance considerations . 46

5.2 Choice of parameters . 48

5.3 Results . 48

6 Conclusions 57

References 58

1 INTRODUCTION 3

1 Introduction

The tremendous computational complexity of insect flight, especially in tur-
bulent flow conditions, motivates the use of adaptive numerical methods.
In the turbulent flow regime a multitude of dynamically active spatial and
temporal scales are involved. Introducing adaptivity can be understood in
the sense that the computational effort is concentrated at locations and time
instants where it is necessary to insure a given numerical accuracy, while ef-
forts may be significantly reduced elsewhere. Adaptive discretization meth-
ods for solving nonlinear PDEs have a long tradition and can be traced back
to the late seventies [3]. Adaptive methods are in many cases more com-
petitive than schemes on regular fine grids, in particular for solutions of
nonlinear PDEs exhibiting a non-uniformly distributed regularity. Essential
ingredients of fully adaptive schemes are first reliable error estimators for
the solution. For evolutionary problems, a major task is the time evolution
of the grid and a reliable prediction of the grid for the next time step. The
drawback of adaptivity is that a significant effort has to be made on program-
ming data structures, which are usually based on graded trees, hash-tables
or multi-domains. Moreover, the computational cost per cell is significantly
increased. Hence, an adaptive method is only efficient when the data com-
pression is large enough to compensate the additional computational cost
per cell. Fortunately, for problems exhibiting local discontinuities, coherent
vortices or steep gradients, adaptive computations are faster than fine grid
computations.

Wavelets and related multiresolution analysis techniques yield reliable er-
ror indicators coupled with high computational efficiency and are thus well
suited for developing adaptive solvers for computational fluid dynamics.
The idea of wavelets is to decompose functions, or flow fields into space and
scale contributions, and possibly directions. The wavelet transform has been
discovered by Alex Grossmann and Jean Morlet in 1984 [23]. The fast wavelet
transform algorithm has been designed by Stéphane Mallat [27] and yields
an algorithm which is even more efficient than the fast Fourier transform.
Nonlinear approximation (see e.g. [10]) provides the conceptual support for
adaptivity; indeed, it introduces a systematic way to classify functions ac-

4 1 INTRODUCTION

cording to their “sparsity”, i.e. the possibility of describing a function by a
small number of “degrees of freedom”. A good practical adaptive algorithm
should yield an approximation to a given accuracy of the solution of a PDE
by activating a number of degrees of freedom comparable to the minimal
theoretical number needed to achieve the same quality of approximation.
Wavelet-based algorithms [8] for solving PDEs were the first ones to be rig-
orously recognized as guaranteeing an optimal complexity property. In the
context of turbulence modeling and adaptive numerical simulations of fluid
flows the Paris and Marseille team have been involved since the beginning
of this field.

Adaptive multiresolution techniques for computational fluid dynamics are
motivated by their huge potential in CPU time savings and reduction of
memory requirements (for example the computations in [13] have shown
that CPU and memory requirements can be reduced by at least one order of
magnitude in terms of memory and CPU time for the case of compressible
Euler equations), while controlling the quality of the solution. Computa-
tional efforts are automatically concentrated in regions where small scales in
space and time are required. This error control allows for high fidelity and
predictive computations, for example for lift and drag coefficients or pres-
sure distributions which are of primordial importance in aerodynamics of
insects. Adaptive multiresolution methods rely on classical solvers (e.g., fi-
nite volumes) and only the grid adaptation, prediction of the grid in the next
time step and the interpolation require the multiresolution tools. Multires-
olution techniques have become popular for hyperbolic conservation laws
going back to the seminal work of Harten [24] in the context of finite vol-
ume schemes and cell-average multiresolution analysis. Starting point is a
finite volume scheme for hyperbolic conservation laws on a regular grid.
Subsequently a discrete multiresolution analysis is used to avoid expensive
computations in smooth regions. A fully adaptive version, still in the context
of hyperbolic conservation laws, has been developed to reduce also memory
requirements [9, 22, 25]. This algorithm has been extended to the 3D case
and to parabolic PDEs [33], and more recently to self-adaptive global and
local time-steppings [11, 12, 29]. Therewith the solution is represented and
computed on a dynamically evolving automatically adapted grid. Different

1 INTRODUCTION 5

strategies have been proposed to evaluate the solution without requiring a
full knowledge of fine grid cell- average values. The books of Cohen [7] and
Müller [28] and the review article [13] give a detailled overview of the sub-
ject.

The ability of wavelets to identify and isolate localized structures such as
coherent vortices, combined with the mathematical rigor of multiresolution
analysis, make them attractive candidates for adaptive computational ap-
proaches and turbulence modeling [34]. Turbulence is characterized by its
intrinsic multiscale behavior, its self-organization into coherent structures,
and a generic randomness. The major computational challenge comes from
the fact that turbulence is active over a large and continuous range of length
scales, which increases with Reynolds number such as Re3/4 for 3D turbu-
lence. As a result, direct approaches that solve the governing Navier- Stokes
equations at all scales without any model, i.e., by direct numerical simula-
tion (DNS), are limited by the available computing power, which restricts
the applicability of DNS to low- and moderate Reynolds numbers. In engi-
neering applications, turbulence models may be necessary to reduce compu-
tational complexity while capturing the physics of turbulent flows. Wavelets
offer a unique hierarchical framework for simulating and modeling turbu-
lent flows based on the ability of wavelet multiresolution analysis to iden-
tify and isolate the energetic coherent structures that govern the dynamics
of the flow. Sparse representations of turbulent flow fields coupled with
wavelet-based numerical methods allow the tight integration of the compu-
tational and physics-based modeling. The wavelet-based numerical simu-
lation, called coherent vortex simulation (CVS) was introduced by Farge et
al. [20]. It adapts dynamically the local resolution of the computation to in-
termittent flow structures, using traditional discretization methods on these
adaptive grids, e.g. finite differences. The underlying idea is the decom-
position of the flow into coherent and incoherent contributions by means of
wavelet filtering of the vorticity field. The evolution of the coherent flow
is then computed deterministically, whereas the influence of the incoherent
background flow is neglected. In the present application to insect flight, we
will use CVS in the sense that we rely on adaptive meshes that are refined
based on wavelets. CFD simulations, in particular insect flight in turbulent

6 2 GOVERNING EQUATIONS

flow conditions, produce large scientific data sets that often have localized
regions of non-smooth data (or regions of very high gradients). The wavelet
transform yields an optimal compression of these data sets and allows for ef-
ficient progressive refinement to reveal more detail in areas of interest, when
non-smooth features are present, the visualization process that results from
decoding compressed representations the specific features of the non-smooth
regions can be visualized avoiding unwanted oscillations. Multiresolution
transforms represent an improvement in feature detection and feature-based
visualization.

2 Governing equations

We intent to approximate the incompressible Navier–Stokes equations (see,
e.g., [4]),

∂tu = −u · ∇u−∇p + ν∇2u (2.1)

0 = ∇ · u (2.2)

where ν is the (normalized) viscosity and the density $∞ has been normal-
ized to unity. The approximation will be done using the method of artificial
compressibility (ACM). The divergence-free constraint is approximated by
an evolution equation for the pressure,

∂tu = − (u · ∇) u−∇p + ν∇2u

∂t p = −c2
0∇ · u

where the new parameter c0 can be interpreted as some sort of speed of sound
which is large1 compared to |u|. This method goes back to Chorin [6] and has
recently been revisited by Ohwada [30], who claims it to be quite efficient.
It has the appealing property of not requiring us to solve a linear system in
every time step, as classical projection methods do. As a remark we note
that we cannot rewrite the non-linear term in rotational formulation (ω× u)
anymore if the fluid is not divergence-free. The rotational formulation is

1One may think of the speed of sound in incompressible flow as the limit c0 → ∞

2 GOVERNING EQUATIONS 7

customary when working with Fourier spectral codes, as it is done in the flusi
code, which we use extensively in the present work for obtaining reference
simulations.

The no-slip boundary conditions on a solid body immersed in the fluid are
approximated with the volume penalization technique, which has been ap-
plied successfully to a large span of problems in the past [15–19]. The penal-
ized version of the governing ACM equations read

∂tu = −u · ∇u−∇p + ν∇2u− χ

Cη
(u− us)−

χsp

Csp
(u− u∞) (2.3)

∂t p = −c2
0∇ · u− γp−χsp

Csp
(p− p∞). (2.4)

Where we added two penalization terms, the red one for the obstacle itself
(e.g., a cylinder or an insect) and the blue one to model outflow conditions.
Note the latter also acts on the pressure in eqn. (2.4), whereas the former
does not. By u∞ we denote the free-stream velocity in the far field of the
body; in an insect flight simulation, this would be the forward flight speed.
The ambient pressure, p∞, is set to zero, since the pressure in incompressible
fluids is generally only defined up to a constant, which we may arbitrarily
set to zero.

We also note the exponential damping term with the constant γ, which Ohwada
[30] introduced as a way to overcome problems arising from incompatible
initial conditions, for example when considering an impulsively started cylin-
der. In this case, u (x, t = 0) = u∞, thus the initial field does not satisfy the
no-slip boundary condition on the cylinder. For early times t, the penaliza-
tion will rapidly2 force the velocity field to be equal to us, say zero for a
cylinder at rest. Thus, because of the penalization, a strong divergence ∇ · u
will be created near the cylinder, and this will be transported as a pressure
wave with the velocity c0. If the domain is periodic, as was the case in [30],
this ‘initial shock wave‘3 remains in the domain and deteriorates results. The
constant γ = 1 was then used in [30] to gradually destroy the wave. We will

2as Cη � 1 by design of the method
3We use this term only to refer to the wavefront resulting from the startup singularity and

do not mean discontinuities as they appear when solving the compressible Navier–Stokes equa-
tions.

8 2 GOVERNING EQUATIONS

see later that the sponge term is a much more effective way of doing do, but
we keep the presssure damping term for completeness.

2.1 A brief look at characteristics

In the following section, we shall briefly discuss the characteristics of the arti-
ficial compressibility equation. This can be used to implement non-reflecting
outlet boundary conditions in the future, but it is also useful to understand
the limitation of the explicit time marching methods we use. We start with
the 2D ACM equation in convective form for the inviscid (ν = 0) case:

∂tux = −ux∂xux − uy∂yux − ∂x p

∂tuy = −ux∂xuy − uy∂yuy − ∂y p

∂t p = −c2
0
(
∂xux + ∂yuy

)
and rewrite it in divergence form (see, e.g., [31]: ∇ · (u ⊗ u) = (u · ∇) u +

(∇ · u) u). Here, we assume ∇ · u = 0, which is only approximately true for
c0 finite. Then we rewrite the equation in flux-form, which yields

∂t

 ux

uy

p

+ ∂x

 u2
x + p
uxuy

c2
0ux

+ ∂y

 uxuy

u2
y + p
c2

0uy

 = 0

and can be shortened to

∂tq + ∂xFx + ∂yFy = 0

which we linearize to obtain

∂tq + X∂xq + Y∂yq = 0

where

Xij = ∂Fx
i /∂qj =

 2ux 0 1
uy ux 0
c2

0 0 0



2 GOVERNING EQUATIONS 9

and

Yij = ∂Fy
i /∂qj =

 uy ux 0
0 2uy 1
0 c2

0 0

 .

We seek waves in the direction k with |k| = 1, which yields

K = kxX + kyY =

 2uxkx + uyky uxky kx

uykx uxkx + 2uyky ky

c2
0kx c2

0ky 0


we now seek to diagonalize the matrix K. The eigenvalues are

λ1 = k · u
λ2,3 = k · u±

√
c2

0 + (k · u)2

The direct consequence of the above is the selection of our time step ∆t based
on the CFL condition:

∆t = CFL · ∆x

|u|+
√

c2
0 + |u|

2

In our code, we employ a Runge-Kutta scheme with fourth order accuracy
in time. This scheme remains stable for CFL < 1.5, but in practice we always
used CFL = 1.0 in the present work. The sponge- and penalization terms
impose additional time step restrictions if integrated explicitly, namely

∆t < min(Csp, Cη)

as does the Laplacian term, namely

∆t < 0.5
∆x2

ν
.

The smallest of the above restrictions finally sets the time step in our solver.

10 3 NUMERICAL SOLUTION ON ADAPTIVE GRIDS

3 Numerical solution on adaptive grids

3.1 Fundamental ideas of the implementation

The first new idea of the WABBIT code has been described above. It consists
in relaxing the incompressibility constraint ∇ · u and employing the ACM
equations instead of the classical incompressible Navier–Stokes equation. In
future research, this approach can likewise be used to design an active penal-
ization method4 which is of higher order than the classical method (see, e.g.,
[1, 2, 5]).

The concept of adaptivity is to concentrate computational efforts where they
are required by the solution at time t. The grid shall thus be refined where
fine scale structures exist, while it can be coarsened in regions where the
flow is smooth and regular. Multiresolution indicators will be used to detect
those regions. Theoretically, those indicators can decide for each single grid
point whether it is significant or not. However, this kind of sparse grid is
very difficult to implement in a high-performance framework. Hence, many
results in the literature on such grids have been obtained using single-core
machines (e.g. [32, 33]). As first suggested by Domingues5 [14], we employ
a block-based formulation instead of a point-based one. This kind of hybrid
datastructure introduces a free parameter, the block size Bs, which can be
used to balance the interest of sparsity and CPU efficiency. The computa-
tional efficiency of blocks is related to their layout in memory: a block is a
contiguous chunk of data. Internally, the entire chunk is transferred from the
memory to the CPU cache, were the actual calculations are performed. The
bandwidth of this datatransfer is an important bottleneck for modern CPU.
Hence, if the complete chunk is transferred, the computation time is dras-
tically decreased, even though more points have been computed. Our grid
is graded, that means we allow at most a factor two difference in resolution
between two neighboring blocks. Each block is identical in size and contains
BD

s (where D = 2 or 3) points. We do not split blocks among mpiranks. If a

4Previous attempts to improve the penalization method failed due to the elliptical constraint
∇ · u = 0, hence we have some hope that combined with the ACM, those methods can work

5The idea of using blocks is older than the work of Domingues et al., but they were the first
to propose it in a multiresolution context

3 NUMERICAL SOLUTION ON ADAPTIVE GRIDS 11

block is marked for refinement, it is split into 2D blocks of the same size. The
reverse process, coarsening, combines 2D blocks into one mother block.

3.2 Multiresolution algorithm

The general solution process to advance the numerical solution ϕ (tn, x) on
the grid Gn to the new time level n + 1 can be outlined as follows.

1. Refinement. We assume the grid Gn is sufficient to adequately repre-
sent the solution ϕ (tn, x), but we cannot suppose this will be true at
the new time level. Non-linearities and other sources may create scales
that cannot be resolved on Gn. Therefore, we have to extend Gn to G̃n by
adding a “safety zone” [34] to ensure that the new solution ϕ

(
tn+1, x

)
can be represented on G̃n.

2. Evolution. On the new grid G̃n, we solve the partial differential equa-
tions using finite differences and explicit time-marching methods.

3. Coarsening. We now have the new solution ϕ(tn+1, x) on the grid
G̃n. The grid G̃n is a worst-case scenario and guaranteed to resolve
ϕ(tn+1, x) using à priori knowledge on the non-linearity. It can now
be coarsened to the final grid Gn+1, removing, in part, blocks created
during the refinement stage.

4. Load balancing. The remaining blocks are, if necessary, redistributed
among MPI processes using a space-filling curve [36], such that all pro-
cesses compute approximately the same number of blocks. The space-
filling curve allows preservation of locality and reduces interprocessor
communication cost.

3.3 Discretization in space and time

We use a fourth order spatial finite difference discretization as proposed by
Tam [35]. This scheme has been obtained as weighted combination of a sixth
and fourth order scheme, where the weight has been chosen in order to op-
timize the modified wavenumber k′. Consider the 1D case, where ui are the

12 3 NUMERICAL SOLUTION ON ADAPTIVE GRIDS

function values on the grid. Then the first derivative is approximated as

u′ = DTWu = (αD4th + (1− α)D6th)u

where

D4th =
1

∆x


. . .

· · · 1
12 − 2

3 0 2
3 − 1

12 · · ·
. . .


and

D6th =
1

∆x


. . .

− 1
60

3
20 − 3

4 0 3
4 − 3

20
1

60
. . .

 .

The weight α = −0.5912 is the result of the optimization of k′. For the second
derivatives, we employ standard 4th order stencils. The time integration is
performed with a standard Runge–Kutta 4 scheme.

3.4 Choice of numerical parameters

The block size Bs The block size is the central computational parameter
for our adaptive framework. It has no influence on the physics, but is rather
the parameter that defines our hybrid data structure. Blocks of size BD

s are
contiguous in the machine memory and can thus be computed efficiently.
From the internal point of view of the CPU, a block is completely read into
the fast cache memory. Then, all operations can be performed, without ad-
ditional access to the slow RAM of the machine. This sort of cache-aware
loop structure is also used to speed up non-block based implementations (in
which case the chunks become purely virtual, while our blocks may feature
jumps in resolution to their neighbors). It can furthermore be highly efficient
for vector machines, like the Earth Simulator in Japan.

Theoretically, setting Bs = 1 recovers the point value multiresolution grids
with maximum sparsity. In those, each point is associated to a wavelet co-
efficient (detail). Those grids feature the lowest number of points, but the
overhead of the data structure is prohibitive. Note that it is furthermore

3 NUMERICAL SOLUTION ON ADAPTIVE GRIDS 13

technically not possible to set the block size lower then the number of ghost
nodes, Bs < g, in our code.

The load balancing frequency Computational parameter, no influence on
the physics. During the refinement and coarsening steps of the multires-
olution algorithm, the number of blocks on each mpirank can become un-
balanced, i.e., some mpirank hold more blocks than others. The balance is
restored using the balance_load procedure, which did however in some sim-
ulations turn out to be expensive in terms of execution time. Hence, a switch
has been added to perform the balancing only every couple of time steps. In
this work, however, we use dealiasing of the finest blocks, and hence can use
load-balancing in every time step without impact on the performance.

The artificial speed of sound c0 Compared to the world of incompressible
fluid dynamics, the new constant c0 appears and has to be set accordingly.
We have second order convergence, which we will demonstrate later. In
order to appropriately model incompressible fluid, the relation |u|max << c0

should be satisfied. Furthermore, tracking the divergence ∇ · u over time
allows a simple a posteriori control of the error. If the divergence is found to
be too large, c0 should be decreased.

The penalization parameter Cη The penalization parameter can be inter-
preted as permeability of the solid material, hence it is intuitively clear that it
has to be small. The convergence towards the solution of the Navier–Stokes
equations in the limit Cη → 0 have been proven [1], but in a continuous
setting (ignoring any discretization). The convergence rate, which is C1/2

η ,
combined with the physical intuition do not yet yield a guideline on how to
choose Cη . This can be obtained by considering the penalization as a sink for
momentum, which has to compensate the momentum flux across the phys-
ical boundary ∂Ωs. This flux is mainly due to the viscosity ν, because the
velocity on the wall is close to zero. Hence, a thin boundary layer forms on
the inside of the obstacle Ωs, and [18] suggests to keep the number of points

14 3 NUMERICAL SOLUTION ON ADAPTIVE GRIDS

Kη within this layer constant. Hence,

Kη =
√

νCη/∆x (3.1)

or equivalently
Cη = (Kη∆x)2/ν. (3.2)

In an adaptive simulation, ∆x is not an à priori known constant, but rather
dynamically adjusts to the solution. During this work, it did however turn
out that the penalization term and its associated discontinuity is so strong
that, in practice, the fluid–solid interface is always on the highest admissible
level Jmax. Hence, we might well set

∆x = Lx2−Jmax /(Bs − 1)

by analogy with published results.

3.5 Ghost nodes synchronization

During this project, a considerable amount of time had to be spend on im-
proving wabbit’s ghost node synchronization, i.e. the synchronization of a
layer on each block which overlaps with the neighboring blocks. This pro-
cedure is critical for a good parallel performance. Together with Prof. Reiss,
this routine has been completely rewritten. Since this part is technical, we
limit its presentation to a brief summary of improvements.

1. In previous versions of the code, numerous problems appeared iron-
ically at the simplest neighboring relation, where two blocks on the
same level share the common boundary. Those difficulties are related
to our grid definition: each block has a line of points which also be-
longs to neighboring blocks. This layer of points is called ’redundant
nodes’. The old code assumed that those points were indeed identical,
and if they weren’t, errors could not be corrected. This entailed numer-
ous difficulties: if the nodes’ values differ by machine ε, this difference
would grow and destroy the solution. The new code corrects this prob-
lem by arbitrarily assigning the ’redundant nodes’ to either block and

3 NUMERICAL SOLUTION ON ADAPTIVE GRIDS 15

overwriting them on the other. The choice of block is done by higher
lgt_ID, but is arbitrary as long as it is unique.

2. The staging concept of previous codes has been reduced to at most
two stages. Previous versions used up to six stages, each concerned
with significant MPI communication. The new code can also work with
just one stage, at the price of including one-sided interpolation stencils
during the synchronization process.

3. The memory footprint of the code has been reduced by several orders
of magnitude. This change rendered big computations, such as the
present insect simulations, possible. The old code was limited to very
small examples due to enormous memory consumption.

16 4 VALIDATION AND TESTING

4 Validation and testing

4.1 Wavelet compression test

The first test we consider is to verify that the multiresolution part of wabbit
does work properly. To this end, we use a scalar field φ(x, y, z), which we
initialize as a Gaussian blob,

φ(x, y, z) = exp(− |x− x0|2 /β)

where β = 10−2. The field is set on a domain of unit size, and we use a
block size of Bs = 17 and Ng = 4 ghost nodes for the fourth order multires-
olution operator. The blob is set on an equidistant grid with level Jmax = 4.
Subsequently, the grid adaptation is performed using a threshold ε, which
we vary between 10−1 and 10−6. The resulting sparse representation is then
interpolated back to the full equidistant grid with Jmax = 4 using the same
predictor, and the error with respect to the initial field is evaluated. This
error, the compression error, is expected to be proportional to ε.

Fig. 4.1 shows the error as a function of ε for this test case. The dashed
line is the identity, and the error decays as expected with ε. For the largest
values of ε, the block based data structure results in a grid which is too fine
– the error hence is identical for ε = 10−1 and 10−2. This is the desired
behavior – imposing ε results in an error smaller than Cε, where the constant
C is problem-dependent.

4.2 2D: Three vortices problem

As a quantitative validation test for the flow module in 2D, we consider the
three vortices problem proposed in [26]. The setup is periodic and involves
no walls, making it a good starting point for the validation of our new nu-
merical method. At time t = 0, three Gaussian vortices are set in the domain,
two with positive and one with negative sign. Their circulation is Γ = +1

4 VALIDATION AND TESTING 17

10−6 10−5 10−4 10−3 10−2 10−1

ε

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or
2-

n
or

m

β = 10−2, Lx = Ly = Lz = 1, Bs = 17, Ng = 4

Wavelet compression test, 4th order

|| · ||2
|| · ||∞

Figure 4.1: Wavelet compression test for a 3D Gaussian blob. Here, the 4th order
predictor is used. Dashed line is the identity. Shown is the error decay as a function
of ε for the 2-norm and the ∞-norm. Errors are normalized.

and Γ = −1/2, respectively. The initial vorticity is set as

ω(x, t = 0) =
3

∑
i=1

Γi
π · a2)

exp
(
−((x− x0,i)

2 + (y− y0,i)
2)/a2

)
(4.1)

where a = 1/π and the vortex centers are (0.75, 1)π, (1.25, 1)π and (1.25, 1.25)π.
The viscosity is set to ν = 5 · 10−5 and the domain size is 2π. Kevlahan and
Farge [26] used a Fourier pseudo-spectral code for their simulations, but the
original data is no longer available. We therefore re-compute the simulation
using flusi, setting the same initial condition. We used a slightly higher reso-
lution than what was used in [26], namely Nx = Ny = 1536. A Runge–Kutta
4 scheme with a CFL number of CFL = 1.5 is used.

Fig. 4.2 shows the time evolution of the vorticity, using the same isovalues

18 4 VALIDATION AND TESTING

0 π 2π
0

π

2π

t = 0

0 π 2π
0

π

2π

t = 10

0 π 2π
0

π

2π

t = 20

0 π 2π
0

π

2π

t = 40

Figure 4.2: Time evolution of the vorticity ω in the three vortices problem, computed
with the spectral code flusi. The initial configuration consists of three Gaussian vor-
tices which undergo a merging process. Negative isovalues of vorticity represented
by dashed lines.

of ω = [−π/100,+π/100], positive and negative values with 10 isovalues
each. The same contour plot is presented in [26]. The vortices begin to rotate
and eventually merge into a dipole-like structure, creating the characteristic
vortex filaments. The problem is particularly suited for validation purposes
as it features strong non-linear interaction between the vortices, but remains
deterministic. More vortices would form a chaotic system and solvers could
then only be compared in a statistical sense. Here, instantaneous comparison

4 VALIDATION AND TESTING 19

of the entire field is possible.

Reference Flusi

Figure 4.3: Comparison of vorticity field from [26] and flusi solution. The same iso-
values for the contour are used. The fields are visually indistinguishable, justifying
the flusi solution as reference data.

Fig. 4.3 compares flusi’s solution with the published data from [26]. Both
fields agree well and are indistinguishable from each other. Note the time
variable is scaled differently. This comparison confirms the validity of the
reference solution.

Using this test case, we validate the fluid part of wabbit. To this end, we
perform the following types of simulations.

1. The reference solution, obtained with the flusi code, where the incom-
pressible Navier–Stokes equations are solved. The flow field is strictly
divergence-free to machine precision. We use a grid of 1536 × 1536
points and a Runge-Kutta 4 time integrator.

2. The spectral solution of the artificial compressibility equations (2.3-2.4)
with a finite c0. This case, only the effect of c0 enters the error con-
tributions: the spectral discretization is sufficiently precise such that
all errors from spatial and temporal discretization are below machine
precision. We use the same grid as in the first type of simulations.

3. Equidistant simulations using wabbit. Here, the artificial compressibil-
ity eqns. (2.3-2.4) are solved using fourth order finite differences, and

20 4 VALIDATION AND TESTING

hence the discretization error is no longer negligible. Note that as the
initial condition (4.1) is defined in terms of vorticity, but wabbit cannot
simply invert the curl operator. Hence, this inversion is done in flusi.
All wabbit computations hence start with an equidistant initial condi-
tion for u and p, which can be directly adapted in the first time step.
Note that the pressure p is computed with spectral accuracy, which can
be different from an inversion of the curl using the same discretiza-
tion as in wabbit. For the equidistant simulations, Jmin is fixed and
Jmax = Jmin + 1. Hence, we technically allow the refinement to push
the grid one level up, then perform time evolution, before coarsening
the entire grid down again. This ensures that the non-linear term is
dealiased properly. The same could be achieved with explicit filtering,
but is was technically easier to allow two levels.

4. Adaptive simulations using wabbit. Here, the parameter ε joins the set
of numerical parameters. We now have ε, c0 and Jmin.

4.2.1 Equidistant computations

For all computations on the three vortices problem, we set Bs = 33 and
g = 4. The choice of ghost nodes is made to use the fourth order method. We
start by comparing the spectral solution of the artificial compressibility qua-
tions (2.3-2.4) with a finite c0 to the quasi-exact solution of the incompressible
Navier–Stokes equation. As the discretization can in both cases assumed to
be exact (compact spectrum, small ∆t), this allows us to evaluate the ACM
model error alone. The error is evaluated at t = 20. Fig. 4.4 shows the decay
of the error in that case, which is second order in c0.

When solving the ACM equations using wabbit, we use a fourth order dis-
cretization in space, which we test next. The solution process is described
above (type-3 simulation). Fig. 4.5 shows the error decay in this case. Note
the reference solution is the spectral ACM computation with the same c0 as
the wabbit run, and not the incompressible solution. We have tested several
values for c0 (solid lines) and observe convergence orders between two and
three. This is lower than the expected fourth order, but not low enough to
point to serious errors in the code. In such cases, the convergence typically

4 VALIDATION AND TESTING 21

101 102

c0

10−3

10−2

||u
x

fl
u
si
,a

c
m
−
u
x

fl
u
si
,i

n
c
|| 2
/
||u
x

fl
u
si
,i

n
c
|| 2

order=-1.999286

Figure 4.4: Equidistant simulations of the three vortices problem. Error of the spec-
tral solution of the ACM equations with respect to the incompressible spectral solu-
tion. Here, c0 is the sole parameter, since the discretization in the spectral ACM case
can assumed to be quasi-exact. The model error of the ACM decays second order in
c0.

drops to first or zeroth order, which is not the case here. Our simulations
are performed with dealiasing as described above, and for comparison we
also present one series of simulations without it (dashed line). The conver-
gence rate is very similar to the dealiased simulations, but the offset is a lot
lower. This points to a principal difficulty with dealiasing in this code: if
the viscosity is sufficiently high to remove high-wavenumber energy, which
is produced by the non-linear term, then dealiasing is not necessary. This
appears to be the case in this setup. Hence, dealiasing increases the error,
because the right hand side is filtered effectively to be evaluated on J − 1.
In other words, we could shift the dashed curve one datapoint to the left,
to compare it with the dealiased simulation. The effect on computational
performance can be quite substantial: the cost increases 16-fold (2D times as
many grid points, time step ∆t/2). However, we must bear in mind that if
the viscosity is too weak, the simulation accumulates energy in the highest

22 4 VALIDATION AND TESTING

wavenumber and eventually diverges. This can, however, also be prevented
with filters different from the prediction / restriction round trip we use in
the present work. This direction is left for future work.

10−3 10−2 10−1

∆x = Lx2−Jmax/(Bs − 1)

10−5

10−4

10−3

10−2

10−1

||u
x
−
u
x

fl
u
si
,a

c
m
|| 2
/
||u
x

fl
u
si
,a

c
m
|| 2

c0 = 10, order=2.690721

c0 = 20, order=2.369627

c0 = 30, order=2.339429

c0 = 40, order=2.322857

c0 = 80, order=2.169304

c0 = 20, order=3.136637 (no-dealias)

Figure 4.5: Equidistant simulations of the three vortices problem. Error of the
wabbit equidistant solution of the ACM equations with respect to the spectral ACM
solution.

In the next step, we compare the wabbit ACM solutions with the quasi-exact
solution of the incompressible Navier–Stokes equations. We hence have two
errors, the model error of the ACM and the discretization error. Fig. 4.6
shows the error decay. The requirement of error balancing now becomes
apparent. For instance, consider the blue curve with c0 = 10. While the error
first decays if the resolution is increased, it later saturates due to the error
of the ACM and increasing the resolution beyond a certain threshold makes
no sense for fixed c0. This threshold should be determined in future work,
such that the relation c0(∆x) is pre-determined. It is questionable if that can
succeed for the generic case, since it may be problem dependent.

Fig. 4.7 finally shows the same information represented differently and stud-
ies the error decays with c0 at fixed resolution. Again, the initial convergence

4 VALIDATION AND TESTING 23

10−3 10−2 10−1

∆x = Lx2−Jmax/(Bs − 1)

10−2

10−1

||u
x
−
u
x

fl
u
si
,i

n
c
|| 2
/
||u
x

fl
u
si
,i

n
c
|| 2

c0 = 10, order=0.384465

c0 = 20, order=1.357906

c0 = 30, order=1.819953

c0 = 40, order=2.083139

c0 = 80, order=2.162786

Figure 4.6: Equidistant simulations of the three vortices problem. Error of the
wabbit equidistant solution of the ACM equations with respect to the spectral in-
compressible solution.

is the same as in Fig. 4.4, until the spatial discretization error saturates.

4.2.2 Adaptive computations

For the adaptive computations of the three-vortices problem, we are left with
one additional error, which is the compression error. It is controlled via the
parameter ε. Other parameters, notably the block size Bs = 33 are held con-
stant. Recall that the initial condition is computed using the spectral solver,
hence it is read from file and initialized on a dense grid, which is identical
for all simulations (for a given Jmax). Immediately after reading, the grid is
adapted until it satisfied the prescribed precision criterion. The maximum
level allowed in the simulations has the same notation as in the previous
section. The right hand side is evaluated at most on Jmax, and after time
evolution coarsened to Jmax − 1. This ensures proper dealiasing.

The artificial compressibility equations are supposed to approximate the in-

24 4 VALIDATION AND TESTING

101 1022× 101 3× 101 4× 101 6× 101

c0

10−3

10−2

||u
x
−
u
x

fl
u
si
,i

n
c
|| 2
/
||u
x

fl
u
si
,i

n
c
|| 2

Jmax = 5, order=-1.472912

Figure 4.7: Equidistant simulations of the three vortices problem. Convergence in
c0 for fixed resolution Jmax = 5, reference solution is spectral incompressible.

compressible Navier–Stokes equations, in which the pressure p is not a state
variable but rather a Lagrangian multiplier that ensures ∇ · u = 0. As a
consequence, the pressure is smoother than the velocity in the incompress-
ible solution. In the ACM this is only approximately true, ∇ · u ≈ 0, and
pressure waves exist which travel in the domain. This wave-like charac-
ter is often associated with relatively high frequencies, as we will see later.
Hence, the pressure field in the ACM is less smooth than it is in incompress-
ible Navier–Stokes. This leads us to the idea that the multiresolution thresh-
olding can be applied either to the entire state vector (u, p) or to the velocity
u alone. In the latter case, fine details in the pressure may be ignored, pro-
vided the velocity is sufficiently regular at this position. Here, we test both
approaches.

Fig. 4.8 shows the error of the adaptive computations for a fixed c0 = 100.
Thresholding is applied to the complete state vector (solid lines) and to u
only (dashed lines). Comparing the y-axis with the y-axis in Fig. 4.4, it is
clear that the ACM error is negligible in front of discretization- and compres-

4 VALIDATION AND TESTING 25

sion error in this example. The error behaves as expected. Smaller ε result
in smaller errors, provided the maximum refinement level is high enough.
For fixed Jmax, the error saturates below a certain ε, when the discretization
error dominates. In general, the difference in error between the two thresh-
olding rules is small. The curves follow the same overall trend. In particular,
thresholding the velocity only does not increase the total error.

10−5 10−4 10−3 10−2 10−1

ε

10−3

10−2

10−1

||u
x
−
u
x

fl
u
si
,i

n
c
|| 2
/
||u
x

fl
u
si
,i

n
c
|| 2

— threshold (u, p) – – threshold (u), (c0 = 100)

Jmax = 3

Jmax = 4

Jmax = 5

Jmax = 6

Figure 4.8: Adaptive simulations of the three vortices problem. Convergence in
ε for fixed c0 = 100 and different Jmax. The error is given with respect to the
incompressible solution. Note the ACM error is sufficiently small not to appear in
this figure (cf. Fig. 4.4). Solid colored lines: thresholding is applied to the complete
state vector (u, p). Dashed colored lines: thresholding applied only to u. Black
dashed line is a slope ε1.

While the error remains virtually unchanged by the thresholding rule, the
computational cost can vary appreciably. To this end, Fig. 4.9 shows the
number of blocks Nb saved to disk at the time of error comparison, which
is t = 20 for all simulations. Note Nb is evaluated after grid adaptation

26 4 VALIDATION AND TESTING

(coarsening), hence the right hand side is evaluated on 4Nb blocks. One can
see a significant reduction in Nb especially for intermediate value of ε. Once
ε is decreased sufficiently, the difference becomes small. This is because the
grid becomes full in both cases. We conclude that applying the thresholding
operator to the velocity only appears to be a valuable strategy.

10−5 10−4 10−3 10−2 10−1

ε

101

102

N
b

— threshold (u, p) – – threshold (u), (c0 = 100)

Jmax = 3

Jmax = 4

Jmax = 5

Jmax = 6

Jmax = 3

Jmax = 4

Jmax = 5

Jmax = 6

Figure 4.9: Adaptive simulations of the three vortices problem. Number of blocks at
the time of comparison, t = 20. Note Nb is evaluated after grid adaptation (coars-
ening), hence the right hand side is evaluated on 4Nb blocks.

Fig. 4.10 shows the vorticity and divergence of the flow field for both thresh-
olding rules. For ε = 10−4 the number of blocks differs by a factor of two.
We do however note that the fluid divergence ∇ · u is larger if thresholding
is applied to u only.

4 VALIDATION AND TESTING 27

t=20.000000 Nb=241 Bs=33

1.5

1.0

0.5

0.0

0.5

1.0

1.5
t=20.000000 Nb=115 Bs=33

1.5

1.0

0.5

0.0

0.5

1.0

1.5

t=20.000000 Nb=241 Bs=33

0.0002

0.0001

0.0000

0.0001

0.0002

t=20.000000 Nb=115 Bs=33

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

Figure 4.10: Adaptive simulations of the three vortices problem. Vorticity (top) and
divergence (bottom), ε = 10−4, Jmax = 6, thresholding applied to all components
(left) and velocity only (right).

28 4 VALIDATION AND TESTING

4 VALIDATION AND TESTING 29

4.3 2D: flow past a cylinder

We now consider a first test case involving wall, still in 2D to keep the setup
simple and computational cost low. This aim of this section is to first estab-
lish the choice of parameters for the outflow sponge, then to proceed to a
quantitative validation. The setup is illustrated in Fig. 4.11. It consists of a
cylinder of unit diameter in a large domain which is either 16× 16 or 32× 32
diameters. We use a block size of Bs = 17 throughout the present section. In
the first subsection, the Reynolds number is Re = Du∞/ν = 200, where the
mean flow u∞ = 1. The initial condition is

ux(x, t = 0) = u∞

uy(x, t = 0) = 0.1u∞

p(x, t = 0) = 0

and these conditions are enforced in the sponge layer at the domain border.
The cylinder is modeled with the volume penalization method, and we set
Cη = 10−4 in the first part of this section.

4.3.1 Choice of parameters for the sponge

The sponge layer has two primary functions: it (a) damps incoming waves
and should minimize their reflection back in to the physical domain, and
(b) enforces the far field boundary conditions at the domain borders. From
equation (2.3-2.4) we note that the sponge term acts also on the pressure,
i.e., it imposes a Dirichlet-type boundary condition on p. The (spatial) mean
of the pressure 〈p〉 does not have any physical meaning in the governing
equations: we hence arbitrarily set 〈p〉 = 0 for all times t. We furthermore fix
c0 = 35 and perform adaptive simulations (ε = 10−3, Jmax = 8, dealiased).

The shape of the sponge layer is imposed by the desired minimization of
reflections. Fig. 4.12 shows the sponge mask. It has unit values directly on
the border of the domain and becomes zero at a distance Lsp, which we set to
Lsp = 0.75 in the present experiments. The shape in between is a polynomial
with zero gradients at the extremities.

30 4 VALIDATION AND TESTING

Figure 4.11: 2D flow past a cylinder, setup description.

In the spectral code flusi [15–18], sponges have likewise been used to re-
move the inherent periodicity of the Fourier discretization on which this
code relies. Those sponges have however different properties than the ones
we use here: namely, they act on the vorticity. The sponge constant was in
those simulations set to a rather large value, say Csp = 10−2 or even larger.
This can allow vortex pairs to enter the sponge collectively. If the sponge is
too strong, it can happen that one out of two vortices in a traveling dipole is
destroyed quickly, and then leaves the other one orphaned in the domain.

The physics in the present work is however different, which becomes par-
ticularly apparent for impulsively started flow, as we treat them in this case.
The penalization quickly forces the flow inside the cylinder to zero, which
results in the creation of divergence ∇.u. This is then transported as a wave
which velocity c0. Fig. 4.13 illustrates this behavior for three distinct times.
The impact of the wave on the sponge takes place at

t ≈ L
2

1
c0

= 0.229

4 VALIDATION AND TESTING 31

t=0.000000 Nb=268 Bs=17

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.12: Sponge mask as used in the simulations. The sponge is unity on the
border and zero at a distance Lsp, in between a polynomial expression is used.

where some uncertainty arises from the finite size of the cylinder and sponge
layer (hence the traveled distance is not exactly L/2).

We test three different values for the sponge parameter, Csp = 10−2, 10−3 and
10−4. The pressure field at t = 0.34 is shown in Fig. 4.14 for those three cases.
One can observe that Csp = 10−2 is not sufficient: a significant portion of the
wave is transmitted to the other side of the sponge, i.e. it passed through the
sponge layer. The best result is obtained with Csp = Cη = 10−4. We hence
recommend for future use to set the penalization and sponge parameter to
the same value as the penalization parameter.

The reflected or transmitted waves unfortunately have an impact on the
forces excerted on the cylinder. Fig. 4.15 shows the drag component, i.e.,
fx, as a function of time. Around t = 0.4, the shock waves hit the cylinder
and result in a sudden and unphysical change in the drag force. Smaller
sponge constants result in smaller perturbation at this point, but even in the
Csp = 10−4 case a difference to the reference computation with twice the do-
main size (L = 32, ε = 10−3, Jmax = 9) is visible. This is due to the remaining
reflection from the sponge.

The domain size has a significant influence on the problem as well, as larger
domains allow the pressure waves to decrease their intensity by simply ’spread-
ing’ their content over a larger area. This decay in peak pressure decays as

32 4 VALIDATION AND TESTING

t=0.042500 Nb=496 Bs=17

−15

−10

−5

0

5

10

15

t=0.170000 Nb=541 Bs=17

−8

−6

−4

−2

0

2

4

6

8

t=0.212500 Nb=520 Bs=17

−6

−4

−2

0

2

4

6

Figure 4.13: Propagation of the initial ‘shock wave‘ created by the impulsively
started cylinder. Shown is the pressure p at three different times during the early
stage of the simulation.

R−1 in 2D and R−2 in 3D configurations. Hence, the entire problem will be
less significant in 3D simulations. For illustration of this fact, Fig. 4.16 shows
the pressure field at t = 1 in the reference simulation with the larger domain,
32× 32. We conclude that the simulations can be sensitive to the design of
the sponge, and that constants as they have been used in spectral compu-
tations cannot be used. The design of sponges is also a direction for future
improvements of the code.

4 VALIDATION AND TESTING 33

t=0.340000 Nb=268 Bs=17

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

t=0.340000 Nb=346 Bs=17

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

t=0.340000 Nb=493 Bs=17

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Figure 4.14: 2D flow past a cylinder. Pressure field at t = 0.34 for the three sponge
constants Csp = 10−2, 10−3 (top left to right) and 10−4 (bottom). Except the sponge
constant all other parameters are identical. In the 10−2 case, a significant portion of
the shock wave is transmitted.

4.3.2 Validation for Re = 40

For a quantitative validation of wabbit’s numerical method, which is the ar-
tificial compressibility coupled with the volume penalization, we now con-
sider again the flow past a cylinder. The choice of physical parameters is
dictated by the work [21], where a convenient reference simulation is pre-
sented, together with a detailed literature overview on both experimental
and numerical results on this flow configuration. The Reynolds number is
Re = 40. This Re is in the deterministic regime, and a steady state solution

34 4 VALIDATION AND TESTING

0.0 0.1 0.2 0.3 0.4 0.5

t/T

0

2

4

6

8

10

f x

Csp = 10−2

Csp = 10−3

Csp = 10−4

large domain

Figure 4.15: 2D flow past a cylinder. Drag force as a function of time for different
sponge intensities. The red dashed line is a reference computation with twice the
domain size; in this case, the pressure waves did not yet hit the cylinder.

develops. No periodic vortex shedding occurs, which simplifies the compar-
ison with the literature.

Note this test case allows a quantitative validation of the code, but its low
Re limits the usefulness of an adaptive computation. The grid is effectively
adapted only in the startup phase of the simulation, until the pressure shock
waves discussed in the previous section have disappeared. Afterwards, the
grid remains practically constant. We should however point out, that the
adaptive code is still highly useful for the present computation. This is be-
cause of the considerable domain size required by the low Reynolds number.
Even though the case is 2D only, the computation using flusi is quite chal-
lenging: for an appropriate domain size, the resolution easily ranges in the
81922 class.

Here, we set the domain size to L = 32 diameters, and compute 15 time
units (based on unit free stream velocity u∞ and unit diameter D). The ini-
tial condition is again an impulsively started flow, as in the previous section.

4 VALIDATION AND TESTING 35

t=1.000000 Nb=346 Bs=17

−0.4

−0.2

0.0

0.2

0.4

Figure 4.16: Flow past a cylinder in 2D. Shock reflection in the case of the larger
domain (32× 32). Due to the larger area, the intensity of the shock decays, which
also reduces reflections.

Fig. 4.17 shows the quantities which are used for comparison. The drag co-
efficient cD = 2Fx is directly obtained from wabbit’s output. The force is
computed by integration of the penalization term. The geometrical proper-
ties of the streamlines are somewhat more difficult to obtain. The stream-
lines are computed using a numerical integration algorithm in paraview; a
high-resolution line seed is used. The geometrical properties were measured
manually from this data, as the process is rather difficult to automatize and
useful only for this simulation.

Table 1 summarizes the different simulations we have performed. The first
series, A1–A5, studies the influence of the penalization parameter Cη , which
turns out to be by far the most important numerical parameter in the present
setup. From the literature we gather the idea of keeping the number of points
in the penalization boundary layer constant, see eqn. (3.1). In a spectral sim-
ulation this was a successful approach. In the setup we use in the present
work, the choice of Kη appears to be much more crucial. Simulation A1 uses
Kη = .15, which is a typical value used in spectral computations. The drag
coefficient cD is however completely off and much too large by a factor of
three. As the time step is ∆t < Cη , we perform very small time steps in run
A1. Hence, we could allow a large speed of sound c0 at no extra cost. Note
besides the very large drag coefficient, the wake properties are actually quite

36 4 VALIDATION AND TESTING

Figure 4.17: Definitions of quantities for comparison, figure adopted from [21]. Be-
sides the drag coefficient, the wake length Lw and the center of recirculation a, b are
used for comparison. Because of time constraints and technical difficulties, the angle
θ is not used in the present work.

reasonable and not off by the same factor. We subsequently reduced Kη in
runs A2–A5 and ultimately found a good agreement with the literature. For
this example, the constant Kη should be in the range 1–3, which is consider-
ably larger than in the spectral code. Note we did not decrease c0 below 25.6
in the A series.

The speed of sound c0 is the parameter investigated in series B. We keep
Kη = 1.5 and vary c0 between 12 and 50. The results are not very sensitive
to c0: barely any change can be observed. Note that the inflow velocity is
u∞ = 1 and the maximum velocity is about umax = 2, hence the ratio c0/umax

is at least 6. This value appears rather low, but still yields good results. We
conjecture that this is a particular property of the steady state solution, where
c0 may eventually drop out of the equations. Specifically, we do not expect
the same behavior in more complex and unsteady flow configurations.

The last series, C, investigates the influence of ε and Jmax on the results. Both
are found rather insignificant: the solution for ε = 10−4 is virtually identical
to the one with ε = 10−3. Sole Jmax slightly modifies the drag coefficients,
while the wake parameters remain unchanged (to within the measurement
precision). The trend with Jmax is a decrease in drag, which is consistent with
the literature, as our drag values are slightly too high.

Fig. 4.18 finally shows the flow field for run A5 (top) and A1 (bottom). The
vorticity ω is shown as background pseudocolor plot, superimposed with

4 VALIDATION AND TESTING 37

Name Parameters Results

c0 Kη Jmax ε cD Lw/D a/D b/D

A1 280 0.15 9 10−3 4.78 2.20 0.73 0.59

A2 25.6 0.50 9 10−3 2.25 - - -

A3 25.6 0.75 9 10−3 1.95 - - -

A4 25.6 1.50 9 10−3 1.71 2.12 0.69 0.56

A5 25.6 2.50 9 10−3 1.64 2.06 0.67 0.58

B1 12.0 1.5 9 10−3 1.70 2.11 0.69 0.58

B2=A4 25.6 1.5 9 10−3 1.71 2.12 0.69 0.56

B3 50.0 1.5 9 10−3 1.73 2.10 0.68 0.58

C1 12.0 1.5 9 10−4 1.71 2.13 0.70 0.58

C2 12.0 1.5 10 10−3 1.63 2.13 0.70 0.58

Ref computation [21] 1.49 2.24 0.71 0.59

Range in literature [21] min 1.48 2.13 0.71 0.59

max 1.62 2.35 0.76 0.60

Table 1: Flow past a cylinder at Re = 40. Key parameters for the simulations are c0,
Kη , Jmax and ε. Since no automated procedure exists for extracting Lw, a and b from
the simulation data, it has been measured manually. Hence, for simulations where
the drag coefficient is too different from the reference value, this extraction has not
been done. For comparison, the values from the reference computation [21] are also
shown, together with the min and max values from all numerical and experimental
papers cited therein.

grid lines (white) and stream lines (black). The qualitative pattern is visually
very similar to published results. Note the striking similarity of both flow
fields, despite a large difference in the drag coefficient. We can from this
data conjecture that the drag coefficient may not be appropriately computed
using the volume integration; the solution might not be very sensitive to Cη

(or Kη), if a different method to obtain the drag force is used, c.f. for example
[2].

38 4 VALIDATION AND TESTING

Figure 4.18: Flow past a cylinder at Re = 40, wabbit computation. Key parameters
of the top simulation are: Kη = 2.5, T = 15, Jmax = 9, c0 = 25.6. Key parameters
of the bottom simulation are: Kη = 0.15, T = 15, Jmax = 9, c0 = 280. Shown is
the vorticity as background pseudocolor-plot, the grid lines (white) and streamlines
(black) which have been used to extract the geometrical quantities defined in Fig.
4.17.

4 VALIDATION AND TESTING 39

4.4 3D: Propagation of a pressure blob

In this section we compare the solution obtained with wabbit to that ob-
tained with flusi. The configuration is intended as a numerical convergence
test, between two codes which solve the same equation differently, and the
solution is not physically relevant. We therefore do not test the convergence
with respect to c0. The initial condition is quiescent flow, u(t = 0) = 0,
combined with a Gaussian blob for the pressure,

p(x, t = 0) = exp(− |x− x0|2 /β)

where β = 0.01. We fix the parameter c0 arbitrarily to 15, the domain size is
1× 1× 1, the block size Bs = 17 and ν = 10−5. For this configuration, the
initial pressure distribution forms waves that propagate through the periodic
domain. No sponges are used to remove the spatial periodicity. Note this
solution cannot exist in perfectly incompressible fluids, where ∇.u = 0 and
hence p(t, x) = 0 for quiescent fluid.

The reference solution is obtained using the spectral code flusi and like-
wise solves the artificial compressibility equations 2.3-2.4, but uses a spectral
discretization combined with a Runge–Kutta 4 time discretization. We com-
pare the solution at t = 0.1. The pressure waves have at this time traveled
t/c0 = 1.5 length units, which is larger than the domain size. While the time
for comparison is somewhat arbitrary, it should be sufficiently long to allow
errors to build up, which is hence ensured with our choice. For the reference
solution, we used a 5123 grid and a 7683 grid to check if the resolution is suf-
ficient and the reference solution can be trusted. Fig. 4.19 shows the spectra
of the x-component of the velocity and the pressure at t = 0.1. The mag-
nitude of the Fourier coefficients is virtually identical for both resolutions,
and only differs in the highest wavenumbers. The magnitude of those coeffi-
cients is however so small (< 10−20) that both spectra can be called ’compact
in Fourier space’. Hence, the code converges spectrally, and the solution is
extremely precise. We conclude that the reference solution is sufficiently pre-
cise.

We perform two series of simulations with wabbit: equidistant and adaptive.

40 4 VALIDATION AND TESTING

100 101

k

10−26

10−23

10−20

10−17

10−14

10−11

10−8

10−5

E
(k

)

ux (512)

ux (768)

p (512)

p (768)

Figure 4.19: Pressure blob test in 3D. Spectra of flusi solutions for the pressure blob
at time t = 0.1. Shown are the magnitudes of the Fourier coefficients of the x-
velocity and pressure, both for two resolutions (5123 and 7683). The k-axis is show
only until k = 26, because magnitudes of higher wavenumbers are zero to machine
precision.

For the equidistant simulations, Jmin = 2, 3, 4 is fixed and Jmax = Jmin + 1.
Hence, we technically allow the refinement to push the grid one level up,
then perform time evolution, before coarsening the entire grid down again.
This ensures that the non-linear term is dealiased properly. The same could
be achieved with explicit filtering, but is was technically easier to allow two
levels. The computational overhead of the approach was very small. Fig.
4.20 shows the error as a function of the resolution ∆x = 2−Jmin /(Bs − 1),
for both ux and p. The expected 4th order convergence is observed for both
quantities. This test confirms that wabbit’s right hand side is properly im-
plemented in the 3D case.

In the adaptive simulations, we set ε = (10−1, 10−2, 10−3, 10−4, 10−5, 10−6)

4 VALIDATION AND TESTING 41

10−24× 10−3 6× 10−3

∆x

10−4

10−3

10−2

||φ
−
φ

fl
u

si
|| 2
/|
|φ

fl
u
si
|| 2

ux [order=3.99]

p [order=3.89]

Figure 4.20: Pressure blob test in 3D. Error decay of wabbit’s solution on an
equidistant grid as a function of the resolution. The reference solution is obtained
using the spectral code. For both the x-component of velocity and the pressure, the
expected fourth order is obtained.

and Jmax = (3, 4, 5, 6, 7). All other parameters are the same as in the previous
tests. Fig. 4.21 shows the error as a function of ε and Jmax. For large values

4.5 3D: performance considerations

The choice of computational parameters can depend on the test case and its
physical parameters. As a first test, we consider here the method of artificial
compressibility in three space dimensions. Hence, the state vector has four
entries. The initial condition is quiescent flow, u(t = 0) = 0, combined with
a Gaussian blob for the pressure,

p(x, t = 0) = exp(− |x− x0|2 /β)

42 4 VALIDATION AND TESTING

10−6 10−5 10−4 10−3 10−2 10−1

ε

10−4

10−3

10−2

10−1

||φ
−
φ

fl
u

si
|| 2
/|
|φ

fl
u
si
|| 2

Jmax=3

Jmax=4

Jmax=5

Jmax=6

Jmax=7

Figure 4.21: Pressure blob test in 3D. Error as a function of the multiresolution
threshold ε. The maximum level J is a parameter of the curves. If ε is decreased below
10−2, the expected linear behavior is found, i.e. the error is directly proportional to
ε. The error saturates below a threshold ε0(Jmax), which is when the discretization
error dominates the compression error.

where β = 0.01. For the performance tests, we vary only the block size Bs,
and keep all other parameters fixed. This implies that the resolution ∆x de-
pends on the block size. At this point, however, we are interested in the com-
putational performance rather than the solution itself, which justifies that
choice.

The tests are performed on the production machine we use, the IBM Blue-
Gene/Q of IDRIS, situated in Orsay, France6. We set bg_size=64 and use
16 ranks per node, thus 1024 threads are executed. The memory of 1024 GB
is allocated in the beginning of each simulation7. If the number of blocks is

6http://www.idris.fr/turing/
7Due to various small buffers and some approximations in the memory computations,

4 VALIDATION AND TESTING 43

too small, notably smaller than the number of mpiranks, then wabbit cannot
perform efficiently. Hence, for the performance testing, we design the test
case such that enough blocks exist, by setting ε = 10−5 and Jmax = 6. It
is sufficient to compute n = 30 time steps for the purpose of performance
testing.

11 13 15 17 19 21 23 25 27 29
Bs

0

100

200

300

400

500

600

700

tc
pu

 [s
]

Time evolution
Adapt mesh
Refine mesh
Total

Figure 4.22: Influence of Bs on the performance of an adaptive simulation of a pres-
sure blob. CPU times are shown as average (over all mpiranks) and standard devia-
tions (errorbars, small in magnitude). Computed on 1024 CPUs.

Fig. 4.22 shows the contributions to the total cpu time, split into refinement,
time evolution and adaptation (coarsening). These are the three major parts
in the code. CPU timing is averaged among all mpiranks. All contribu-
tions are shown as a function of the block size Bs. The standard deviation of
the CPU time is always small, indicating a good load balancing in this case.
All mpiranks perform approximately the same number of operations. The
general trend is that the grid adaptation becomes cheaper with increasing

wabbit is told to allocate 900.0GB of memory

44 4 VALIDATION AND TESTING

Bs, while the time evolution (the actual right hand side evaluations) become
more expensive. The grid refinement is only weakly dependent on Bs and
furthermore negligible in this example.

It should be noted that Fig. 4.22 is valid only for this particular right hand
side and physics module. For simulations where more expensive right hand
sides are evaluated, the graph can look different (cf Fig. 5.2 for the case of an
insect).

The trend is however a U-shape: for small blocks, the sparsity is high, which
renders the right hand side cheaper. At this point, however, the overhead of
adaptivity is high, such that the total cost is higher. With increasing Bs, we
sacrifice the sparsity more and more, which renders adaptivity cheaper but
the right hand side more expensive. Fig. 4.23 illustrates the number of blocks
and the total number of grid points. For this example of a pressure blob, a
block size in the range 17–23 appears to be a good choice.

4 VALIDATION AND TESTING 45

11 13 15 17 19 21 23 25 27 29
Bs

20

30

40

50

60

70
N_

bl
oc

ks
 /

CP
U

11 13 15 17 19 21 23 25 27 29
Bs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

To
ta

l n
um

be
r o

f p
oi

nt
s o

n
gr

id

1e8

Figure 4.23: Top: Influence of Bs on the number of blocks per cpu Nb used in the
simulation of the pressure blob. With increasing Bs, the number of blocks decreases.
Bottom: total number of points on the grid, Ntot = Nb · B3

s . The sparsity reduces
with increasing Bs, hence the total number of points increases. The largest run
contained 500 million grid points.

46 5 APPLICATION TO INSECTS

5 Application to insects

In the final section of this work, we consider the main application, which is
flapping insect flight. Fig. 5.1 visualizes the wingbeat of the model insect.

t/T=0.0 t/T=0.1 t/T=0.2 t/T=0.3 t/T=0.4

t/T=0.9t/T=0.8t/T=0.7t/T=0.6t/T=0.5

Figure 5.1: Visualization of the wingbeat.

5.1 Performance considerations

Prior to performing full scale computations, we check the performance of the
code. We consider the insect test case (bumblebee bombus terrestris) studied
in [15, 18]. For the performance tests, we first vary only the block size Bs, and
keep all other parameters fixed. This implies that the resolution ∆x depends
on the block size. At this point, however, we are interested in the computa-
tional performance rather than the solution itself, which justifies that choice.

The parameters are chosen such that the 1024 CPU we use have a sufficient
number of blocks on which they evaluate the right had side (ranging from
Nb = 21960 for Bs = 11 to Nb = 17256 for Bs = 35). The number of blocks
Nb weakly depends on Bs, hence the parallel efficiency is approximately con-
stant. In particular, no CPU idles in any of the simulations. Fig. 5.2 shows
the CPU time fractions for time evolution, refinement and coarsening as a
function of the block size Bs. The overall picture is very different for the one
discussed in Fig. 4.22, as the CPU time monotonically increases with Bs. The
reason for this behavior is the expensive mask function χ which encodes the
insect. It has to be constructed at every evaluation of the right hand side,
hence four times per time step. Unfortunately, it is not possible to construct
the mask for the insects body only once, as is done in flusi (for simulations

5 APPLICATION TO INSECTS 47

where the insect is tethered). Rather, even if the body is not time-dependent,
our grid is, and hence there is no easy way around re-constructing the mask
at every substep. As a direction for future improvement, one can try to con-
struct the mask for the body at least only once per time step, since the grid is
not altered during the time step.

11 13 15 17 19 21 23 25 27 29 31 33 35
Bs

0

200

400

600

800

1000

tc
pu

 [s
]

Time evolution
Adapt mesh
Refine mesh
Total

Figure 5.2: Insect performance test. We performed n = 25 time steps on an adaptive
grid (L = 8, Jmax = 7, ε = 10−3) with the artificial compressibility method. Shown
is the CPU time in seconds for the three major tasks of the simulation as a func-
tion of the block size Bs. Note that the mask generation for the insect considerably
contributes to the overall cost.

As shown in Fig. 5.3, the CPU could be reduced by simply omitting the
body entirely, which reduces the CPU time requirement by a factor of about
1.7. This, however, is not what we want to do.

48 5 APPLICATION TO INSECTS

0 1 2 3 4 5

t/T

10−2

tc
p

u
/b

lo
ck

[s
]

with body

without body

Figure 5.3: CPU time per block for a complete bumblebee model including the body
and for a model that contains only the wings. Shown is each time step. Peaks
correspond to HDD I/O, solid lines indicate mean over the data. The computational
cost is about 1.73 fold higher in the case with body.

5.2 Choice of parameters

Our choice of parameters is determined by the parameters from the reference
computation [15]. The key parameters are summarized in Table 2. In wabbit,
we can set a much larger domain size then in flusi at little additional cost.
We study only one value of ε due to time limitations, and use two values for
Jmax, a coarse one (7) and a finer one (8). The latter simulation is not finished
by the time of writing. All runs presented in the section are obtained using
1024 CPU cores on TURING, the IBM BlueGene/Q machine in Paris, with a
memory allocation of 900 GB per run.

5.3 Results

The present results are the first adaptive simulations of flapping insects.
Therefore, we should point out that those are preliminary and are rather to

5 APPLICATION TO INSECTS 49

Parameter Flusi Wabbit

Domain size L 4× 4× 6 16× 16× 16

Resolution 768× 768× 1152 max. 40963

Block size Bs – 17

Max. level Jmax – 7 and 8

threshold ε – 10−2

viscosity ν 5.92 · 10−4 5.92 · 10−4

speed of sound c0 incompressible 30.0

inflow velocity 1.246 1.246

penalization Cη 2.5 · 10−4 variable

Table 2: Parameters of flusi and wabbit simulations. All quantities are dimen-
sionless.

be seen as intermediate steps. As those simulations are completely new, we
did not know what to expect from the data. Fig. 5.4 shows how the num-
ber of blocks evolves over time. For the coarser simulations with Jmax = 7,
the complete data for five strokes is available for the four values of Cη we
studied. Their behavior is qualitatively similar: for early times, t < 1, no
wake yet exists, hence the number of blocks is primarily determined by the
insect mask itself. For later times, the wake is constituted, and more blocks
are required. Towards the end of the computation, t > 3, the ’steady state’ is
reached, i.e. the wake is fully formed and viscosity inhibits further growth.
In other words, the production/dissipation balance of turbulence is reached.
The higher resolution computation with Jmax = 8 results in a more than 2-
fold increase in the number of blocks. As the time step is, due to the CFL
condition, divided by two, this simulation is more expensive than the low
resolution ones.

The computational time is mostly consumed in the right hand side (57%),
followed by the coarsening (39%) and the refine everywhere (3%). The over-
head of adaptivity is hence still significant, but the ratio of right hand side
and grid routines is already quite good.

50 5 APPLICATION TO INSECTS

0 1 2 3 4 5

t/T

1000

2000

3000

4000

5000

6000

7000
N
b

Jmax = 8, Cη = 1.0 · 10−3

Jmax = 7, Cη = 5.0 · 10−3

Jmax = 7, Cη = 1.0 · 10−3

Jmax = 7, Cη = 5.0 · 10−4

Jmax = 7, Cη = 2.5 · 10−4

Figure 5.4: Adaptive insect computations, number of active blocks Nb as a function
of time. The value Nb is the number of blocks after grid adaptation, hence the right
hand side is evaluated on 8Nb blocks. Stroke duration T = 1, gray shaded times are
downstrokes.

Fig. 5.5 shows the forces acting on the entire insect. They are obtained using
the conventional volume integration of the penalization term, F =

∫
χ(u−

us)/Cη . Unsteady corrections are neglected [15, 18]. The forces do not agree
well with the results obtained with the spectral code (black dashed line),
which, while not representing the ’true’ solution neither, can be supposed to
be much more trustworthy than present preliminary results.

We first discuss the coarser simulations with Jmax = 7. While the qualita-
tive behavior seems to agree (location of peaks etc), especially the influence
of the penalization parameter is alarming. For the thrust force computed
with Jmax = 7, for instance, the peak force for the downstroke (areas) mono-
tonically increases with decreasing Cη . Hence, no convergence to the flusi
solution can be observed, rather, the smaller Cη , the worse the solution at

5 APPLICATION TO INSECTS 51

those times. At the reversal (gray/white interface) the peak is best hit by the
Cη = 1.0 · 10−3 solution (green). During upstrokes (white), the curves agree
well during the part when the force is negative, and for the subsequent peak
the same behavior as for the peak during the downstroke is observed. Again,
the half-stroke averaged value shows no convergence to the flusi solution.

For the lift force, the picture is again different, this time the Cη = 5.0 · 10−4

solution (red) is the best. Its stroke averaged values agree more or less with
flusi, but again during the upstroke (white) the agreement is poor. Thus,
from this data, we cannot choose the ’best’ Cη . We can just say that Cη =

5.0 · 10−3 (orange) appears to be too large, as very little lift is produced.

Increasing the resolution to Jmax = 8 (blue) generally improved the picture.
Note we can, unfortunately, not perform the four runs for this resolution
due to time limitations. Especially the lift during the upstroke is improved.
In general, the lift force for Cη = 1.0 · 10−3 is similar for both Jmax = 8 (blue)
and 7 (green). Note this is not the case for the thrust, where the blue line is
closest to the orange line.

Just from the force data it is hence not possible to decide which Cη is the
best choice. By the time of writing, we do not have any alternative means
to compute the forces (several ways are possible, see e.g. [2]) or another
quantity suitable for quantitative validation. The fact that the forces are off
does not necessarily nullify the results, as it may, like in the 2D cylinder
at Re = 40 studied previously, ust be the force computation itself which is
faulty.

Figs. 5.6 and 5.7 show isosurfaces of vorticity magnitude in side- and front
view. Contrarily to the force computations, one visually establishes a con-
vergence for the vorticity field. It appears that Cη = 5 · 10−3 is indeed signif-
icantly too high and that the wake in this case lacks many fine scaled struc-
tures present in the other cases. The remaining three cases are more similar to
each other, but in the front view a structure above the insect can be identified
which is intensified for decreasing Cη .

Fig. 5.8 shows the direct comparison with results from the literature for
Jmax = 7, Cη = 5 · 10−4 for the same isosurface of vorticity magnitude. The
wabbit computation lacks many details of the vorticity field. From this fig-

52 5 APPLICATION TO INSECTS

0 1 2 3 4 5

−4

−2

0

2

4

6

8

10

12
f t

h
ru

st

0 1 2 3 4 5

t/T

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

f l
if

t

Jmax = 8, Cη = 1.0 · 10−3

Jmax = 7, Cη = 5.0 · 10−3

Jmax = 7, Cη = 1.0 · 10−3

Jmax = 7, Cη = 5.0 · 10−4

Jmax = 7, Cη = 2.5 · 10−4

flusi

Figure 5.5: Adaptive insect computations, forces obtained from volume integration
of the penalization term. Thrust (top) and lift force (bottom). The sideways force is
zero due to lateral symmetry. Black dashed line is the spectral code reference. Colored
dots represent averages over the half strokes (i.e. the white and gray shaded areas).
The high resolution computation is not finished by the time of writing.

ure, it seems the resolution is not high enough, but at least some principal
features are preserved. Increasing the resolution to Jmax = 8 (same figure)
recovery many details. We conclude that the Jmax = 7 computations are not
yet well enough resolved.

5 APPLICATION TO INSECTS 53

Figure 5.6: Adaptive insect computations, isosurfaces of vorticity magnitude |ω| =
25, 50 and 100. Shown is the side view at time t/T = 3.95 for Cη = 5 · 10−3, 10−3,
5 · 10−4 and 2.5 · 10−4 (from top left to bottom right).

54 5 APPLICATION TO INSECTS

Figure 5.7: Adaptive insect computations, isosurfaces of vorticity magnitude |ω| =
25, 50 and 100. Shown is the frontal view at time t/T = 3.40 for Cη = 5 · 10−3,
10−3, 5 · 10−4 and 2.5 · 10−4 (from top left to bottom right).

5 APPLICATION TO INSECTS 55

Figure 5.8: Adaptive insect computations, direct comparison with the flusi code
(top). Shown is the same isosurface |ω| = 100. The two wabbit cases are Jmax = 7,
Cη = 5 · 10−4 (middle) and Jmax = 8, Cη = 1 · 10−3 (bottom). The coarser
simulation lacks many details present in the spectral solution, while the finer one
recovers them to some extent. The finer run is not yet finalized by the time of writing,
hence the comparison is at t/T = 1.4.

56 5 APPLICATION TO INSECTS

Figure 5.9: Adaptive insect computations, direct comparison with the flusi code
(top). Shown is the same isosurface |ω| = 100. The two wabbit cases are Jmax = 7,
Cη = 5 · 10−4 (middle) and Jmax = 8, Cη = 1 · 10−3 (bottom). The coarser
simulation lacks many details present in the spectral solution, while the finer one
recovers them to some extent. The finer run is not yet finalized by the time of writing,
hence the comparison is at t/T = 1.4.

6 CONCLUSIONS 57

6 Conclusions

During this work, the following milestones have been reached

1. The new ghost node synchronization module of the adaptive code wabbit
is implemented and tested

2. The code to generate the mask function for an insect is imported from
the flusi code and adapted to be suitable for wabbit

3. Extensive validation tests have been performed to verify the different
parts of the code. They reveal some problems with the penalization
method which must be resolved in future work. In particular the force
computation must be carefully verified in future work using different
methods.

4. The first adaptive simulations of a flapping insect have been performed.
Those results are preliminary but promising and demonstrate the feasi-
bility. For future work, the code’s performance must be improved in or-
der to allow higher Jmax for the simulations in a reasonable time frame.
Then, even more detailed simulations are to be performed. By the time
of writing, we also perform simulations of a fruit fly at Re = 150, which
will allow a larger variation of parameters, especially the penalization
parameter.

58 REFERENCES

References

[1] P. Angot, C. Bruneau, and P. Fabrie. A penalization method to take
into account obstacles in incompressible viscous flows. Numer. Math.,
81:497–520, 1999.

[2] M. Bergmann and A. Iollo. Modeling and simulation of fish-like swim-
ming. J. Comput. Phys., 230:329–348, 2011.

[3] A. Brandt. Multilevel adaptive solutions to boundary value problems.
Math. Comp., 31:333–390, 1977.

[4] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Meth-
ods in Fluid Dynamics. Springer Verlag, 1986.

[5] G. Carbou and P. Fabrie. Boundary layer for a penalization method for
viscous incompressible flow. Adv. Diff. Equ., 8:1453–2480, 2003.

[6] A.J. Chorin. A numerical method for solving incompressible viscous
flow problems. J. Comput. Phys., 2:12–26, 1967.

[7] A. Cohen. Wavelet methods in numerical analysis, volume VII of Handbook
of Numerical Analysis. Elsevier, Amsterdam, 2000.

[8] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for
elliptic operator equations – convergence rates. Math. Comp, 70:27–75,
1998.

[9] A. Cohen, S. M. Kaber, S. Müller, and M. Postel. Fully adaptive mul-
tiresolution finite volume schemes for conservation laws. Math. Comp.,
72:183–225, 2003.

[10] R. A. DeVore. Nonlinear approximation. Acta Numerica, 7:51–150, 1998.

[11] M. Domingues, S. Gomes, O. Roussel, and K. Schneider. An adaptive
multiresolution scheme with local time stepping for evolutionary PDEs.
J. Comput. Phys., 227:3758–3780, 2008.

[12] M. Domingues, S. Gomes, O. Roussel, and K. Schneider. Space-
time adaptive multiresolution methods for hyperbolic conservation

REFERENCES 59

laws: Applications to compressible euler equations. Appl. Num. Math.,
59:2303–2321, 2009.

[13] M. Domingues, S. Gomes, O. Roussel, and K. Schneider. Adaptive mul-
tiresolution methods. ESAIM: Proceedings, 34:1–96, 2011.

[14] M. Domingues, S. M. Gomes, and L.M.A. Díaz. Adaptive wavelet rep-
resentation and differentiation on block-structured grids. Appl. Num.
Math., 47:421–437, 2003.

[15] T. Engels, D. Kolomenskiy, K. Schneider, F.-O. Lehmann, and J. Sester-
henn. Bumblebee flight in heavy turbulence. Phys. Rev. Lett., 116:028103,
2016.

[16] T. Engels, D. Kolomenskiy, K. Schneider, and J. Sesterhenn. Two-
dimensional simulation of the fluttering instability using a pseudospec-
tral method with volume penalization. Computers & Structures, 122:101–
112, 2012.

[17] T. Engels, D. Kolomenskiy, K. Schneider, and J. Sesterhenn. Numerical
simulation of fluid-structure interaction with the volume penalization
method. J. Comput. Phys., 281:96–115, 2015.

[18] T. Engels, D. Kolomenskiy, K. Schneider, and J. Sesterhenn. FluSI: A
novel parallel simulation tool for flapping insect flight using a Fourier
method with volume penalization. SIAM J. Sci. Comput., 38(5):S3–S24,
2016.

[19] T. Engels, D. Kolomenskiy, K. Schneider, and J.L. Sesterhenn. A numeri-
cal study of vortex-induced drag of elastic swimmer models. In Proceed-
ings 6th International Symposium on Aero-aqua Bio-Mechanisms, November
13.-16., Honolulu, Hawaii, USA., 2014.

[20] M. Farge, K. Schneider, and N. Kevlahan. Non-gaussianity and coherent
vortex simulation for two-dimensional turbulence using an adaptive or-
thonormal wavelet basis. Phys. Fluids, 11:2187–2201, 1999.

[21] R. Gautier, D. Biau, and E. Lamballais. A reference solution of the flow
over a circular cylinder at re = 40. Computers & Fluids, 75:103–111, 2013.

60 REFERENCES

[22] B. Gottschlich-Müller and S. Müller. Adaptive finite volume schemes for
conservation laws based on local multiresolution techniques. In M. Fey,
editor, Hyperbolic problems: Theory, numerics, applications, volume 1 of Int.
Ser. Numer. Math, pages 385–394. Birkhauser, Basel, 1999.

[23] A. Grossmann and J. Morlet. Decomposition of hardy functions into
square integrable wavelets of constant shape. SIAM J. Math. Anal.,
15:723–736, 1984.

[24] A. Harten. Multiresolution algorithms for the numerical solution of hy-
perbolic conservation laws. Comm. Pure Appl. Math., 48:1305–1342, 1995.

[25] M. Kaibara and S. M. Gomes. A fully adaptive multiresolution scheme
for shock computations. In E.F. Toro, editor, Godunov Methods: Theory
and Applications. Klumer Academic/Plenum Publishers., 2000.

[26] N. Kevlahan and M. Farge. Vorticity filaments in two-dimensional tur-
bulence: Creation, stability and effect. J. Fluid Mech., 346:49–76, 1997.

[27] S. Mallat. Multiresolution approximation and orthonormal wavelet ba-
sis of l2 (r). Trans. Am. Math. Soc., 315:69–87, 1989.

[28] S. Müller. Adaptive multiscale schemes for conservation laws, volume 27 of
Lectures Notes in Computational Science and Engineering. Springer, Hei-
delberg, 2003.

[29] S. Müller and Y. Stiriba. Fully adaptive multiscale schemes for conser-
vation laws employing locally varying time stepping. J. Sci. Comput.,
30:493–531, 2007.

[30] T. Ohwada and P. Asinari. Artificial compressibility method revisited:
Asymptotic numerical method for incompressible Navier–Stokes equa-
tions. J. Comp. Phys., 229:1698–1723, 2010.

[31] R. Peyret. Spectral Methods for Incompressible Viscous Flow. Applied Math-
ematical Sciences 148. Springer, 2001.

[32] O. Roussel and K. Schneider. Coherent vortex simulation of weakly
compressible turbulent mixing layers using adaptive multiresolution
methods. J. Comput. Phys., 229:2267–2286, 2010.

REFERENCES 61

[33] O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn. A conservative
fully adaptive multiresolution algorithm for parabolic pdes. J. Comput.
Phys., 188:493–523, 2003.

[34] K. Schneider and O. Vasilyev. Wavelet methods in computational fluid
dynamics. Annu. Rev. Fluid Mech., 42:473–503, 2010.

[35] Christopher K.W. Tam and Jay C. Webb. Dispersion-relation-preserving
finite difference schemes for computational acoustics. Journal of Compu-
tational Physics, 107(2):262–281, 1993.

[36] G. Zumbusch. Parallel multilevel methods: adaptive mesh refinement and
loadbalancing. Advances in Numerical Mathematics. Springer, 2003.

	1 Introduction
	2 Governing equations
	2.1 A brief look at characteristics

	3 Numerical solution on adaptive grids
	3.1 Fundamental ideas of the implementation
	3.2 Multiresolution algorithm
	3.3 Discretization in space and time
	3.4 Choice of numerical parameters
	3.5 Ghost nodes synchronization

	4 Validation and testing
	4.1 Wavelet compression test
	4.2 2D: Three vortices problem
	4.2.1 Equidistant computations
	4.2.2 Adaptive computations

	4.3 2D: flow past a cylinder
	4.3.1 Choice of parameters for the sponge
	4.3.2 Validation for Re=40

	4.4 3D: Propagation of a pressure blob
	4.5 3D: performance considerations

	5 Application to insects
	5.1 Performance considerations
	5.2 Choice of parameters
	5.3 Results

	6 Conclusions
	References

