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Abstract

The fluid-structure interaction problem of the flapping wings of bumblebees
is considered, with focus on the action of elastic joints between wings and
body. Morphological measurements and kinematic reconstruction of the wing
motion using synchronized high-speed video recordings are described. They
provide the necessary input data for numerical modelling. In particular, for
the first time, the moments of inertia of bumblebee’s wing are determined
using realistic mass distribution. A computational fluid dynamics solver is
combined with a dynamical model that describes the wing motion. The
model consists of the wings approximated as flat plates, connected with the
body by elastic hinges. The results of high-resolution numerical simulations
are presented. The hinged plate model produces realistic feathering mo-
tion and accurate time-average estimates of the aerodynamic performance in
hover, despite some discrepancy in the instantaneous values of aerodynamic
forces compared with the fully prescribed model. A parameter sweep reveals
that the hinge is not exactly tuned to maximum efficiency during hovering
flight, but slightly offset away from the maximum.
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1. Introduction1

Many of insect species are skilful hovering fliers that can generate positive2

lift during both upstroke and downstroke. This ability is achieved by large3

pitching (feathering angle) rotations of the wings necessary for maintaining4

a positive kinematic angle of attack. Earlier research (e.g., Ishihara et al.5

(2009); Whitney and Wood (2010); Ishihara et al. (2014); Chen et al. (2016);6

Ishihara and Horie (2017); Zeyghami et al. (2018)) has shown that similar7

kinematic patterns can be produced by a wing with only up- and downstroke8

motion being prescribed, and elastic hinge attachment permitting passive9

pitching rotation. This technique has become widespread in insect-inspired10

micro-robots because it eliminates the need to directly actuate the pitching11

rotation (Li et al., 2018; Zhang and Deng, 2017; Liu et al., 2017), and it has12

led to many successful designs (Farrell Helbling and Wood, 2018).13

By construction, the passive rotation model mimics dipteran wings, and14

serves as a mechanism for regulating the high-frequency flapping motion only15

using low-frequency control input (Bergou et al., 2010; Beatus and Cohen,16

2015). It is logical to inquire whether this control strategy can be broadly17

used by all flying insects. In particular, it may be suitable for hymenopterans18

since their hindwings are connected to the forewings by hooks. To assess the19

accuracy of this hypothesis, we consider the hovering flight of a bumblebee20

Bombus ignitus. Our work consists of morphological measurements in order21

to quantify the geometrical and the inertial properties of the wings, con-22

struction of a kinematic model of the insect, free-flight measurement of the23

body posture and of the wing kinematics, and computational fluid dynamics24

(CFD) simulations.25

In Section 2, we reconstruct the wing kinematics of hovering bumblebees,26

and measure morphological parameters of the wings, including mass distri-27

bution. To the best of our knowledge, this is the first study where moments28

of inertia based on realistic mass distribution of an insect wing are subse-29

quently used in CFD simulations. Thus, we introduce a torsion-spring hinge30

element in our CFD model of the bumblebee in Section 3. By varying the31

spring stiffness coefficient, we find the optimal value that ensures the best32

agreement between the simulated and measured wing kinematics. Statisti-33
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cal analysis of similar results obtained for multiple individuals is presented,34

followed by aerodynamic analysis.35

Conclusions are drawn in Section 4. In particular, the results of our study36

suggest that the hinged plate model provides a reasonably accurate approxi-37

mation of real bumblebee wing motion. Considering the hinge stiffness factor38

as a material parameter, we conjecture that the value that we have deter-39

mined in the present study may be adequate for all flight regimes. This opens40

a new perspective of numerical simulation of complex flight maneuvers using41

only the wing-tip kinematics as input data, which is much easier to measure42

in experiments than the full three-dimensional wing kinematics.43

2. Morphological measurement and kinematic reconstruction44

2.1. Study specimens45

Bumblebees (Bombus ignitus) from a commercial breeder (Mini Polblack,46

Koppert, Arysta LifeScience Asia, Japan) were maintained in laboratory47

conditions at Chiba University from October 2015 through September 2016.48

The hives were part of the flight experiment facility described in a greater49

detail by Jakobi et al. (2018). Individual bees were randomly selected for the50

measurements reported in the following sections.51

2.2. Wing shape52

The input data required for the numerical simulation of passive rotation53

includes wing shape and moments of inertia. In our model, we approxi-54

mate the wings as flat plates and only take the planar shape into account.55

Deviation from the planar shape may have important consequences for the56

aerodynamic force generation but, to account for it properly, wing deforma-57

tion should be taken into consideration, which is beyond the scope of this58

work. To obtain the outlines, 20 forewings and 18 hindwings were glued on59

a sheet of millimeter paper and photographic images were taken. All wings60

were aligned along their major axes, outlines were rescaled by their maxi-61

mum chord length, then aligned to obtain the best match in the leading edge.62

Average forewing and hindwing contours were obtained in polar coordinates,63

then transformed into the original Cartesian coordinates, see Kolomenskiy64

et al. (2019) for more explanation. The red dotted lines in Fig. 1 show the65

mean forewing and hindwing contours. The dark grey and the light grey color66

bands show, respectively, the intervals of ±1 and ±2 standard deviation from67

the mean.68
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Figure 1: Bumblebee wing morphology. The wing outline shape, including the mean
contours, ±1 and ±2 standard deviation intervals calculated using 20 forewing and 18
hindwing samples, the outline shapes of selected intact samples, and the closed-contour
approximation used in the CFD simulations. Red, green and blue lines show the position
of the veins on the wing. Three different colors are used for visual distinction between
different lines that have different numbers, each having its distinct constant diameter in
the model. The corresponding biological classification (Michener, 2007, page 50) is shown
in the right, for reference. The black and white marker shows the center of mass situated
at xc/R = 0.379 and yc/R = −0.019.
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Some of the wing samples were relatively intact and others were worn.69

This factor contributed to the wing shape variability. The elastic hinge model70

discussed in this paper may help to better understand the effect of wing wear71

on flight performance and behavior of bumblebees, which is an intriguing72

topic in its own right (Haas and Cartar, 2008; Mountcastle et al., 2016). At73

this stage, however, we are mainly interested by the performance of nominally74

intact wings. Therefore, in addition to the statistical analysis, one image of75

an intact wing was digitized for the purpose of extracting the wing contours76

for the CFD model and vein coordinates for the mass distribution model77

described in the next section. This wing contour is shown in Fig. 1 with a78

black dash-dot line. Most of its part lies within the ±1 standard deviation79

band, and it lies entirely in the ±2 standard deviation band. The veins are80

shown as continuous red, green and blue lines. In the CFD simulations, the81

wing is represented as a closed contour using Fourier series (Engels et al.,82

2016b). The latter is shown with a black solid line.83

2.3. Wing mass and moments of inertia84

Since wing length varies between individuals, it is important to measure85

the concomitant variation of the wing mass. For this purpose, 13 individ-86

ual bees were cold-anaesthetised, their wings were clipped and immediately87

weighed using a precision balance (AUW220D, Shimadzu, Japan) with dis-88

play resolution 0.01 mg in the fine mode. We defined mw as the total mass89

of one forewing and one hindwing. The wing length R from the shoulder to90

the forewing tip was measured using a digital caliper. We found that the91

linear regression slope of logmw as a function of logR is equal to 3.04, which92

means that the scaling is close to isometric, see Fig. 2(a) and Kolomenskiy93

et al. (2019). Thus, isometric scaling94

mw = (0.2251± 0.0296)R3 (1)

was applied in the subsequent analysis, where R is in meters and mw is in95

kilograms. For example, a 15 mm-long forewing and a matching hindwing in96

sum would weigh (0.76 ± 0.10)mg, according to this scaling. The forewing97

and the hindwing mass relative to the total wing mass was estimated from 498

samples as mf = 0.806mw and mh = 0.194mw, respectively.99

The moments of inertia were calculated by integration of the distributed100

mass, as explained in greater detail in Kolomenskiy et al. (2019). In an101

additional measurement (3 samples), wings were divided in segments and102

5



13 14 15 16 17 18 19

R , mm

0.4

0.6

0.8

1

1.2

1.4

1.6

m
w

, 
m

g

Measurement

Regression

Isometric scaling

12 14 16 18

R , mm

0

200

400

600

800

m
, 
m

g

Measurement

Regression

Isometric scaling

Figure 2: (a) Wing mass mw defined as the total mass of one forewing plus one hindwing
and (b) body mass m defined as the full mass of the animal, displayed as functions of
the wing length R. Crosses show the measured data points. The large cross in figure (b)
corresponds to the individual #4. Red dashed lines are the log-log linear regression lines.
Solid black lines show the isometric fits (1) for the wings and (8) for the body, respectively.
The gray shaded regions visualize the ±1 standard deviation intervals of (1) and (8).

each segment was weighed. Then, the veins and the membrane were treated103

separately. The vein thickness, necessary for estimating the vein mass dis-104

tribution, was measured using a micro-CT scanner (inspeXio SMX-100CT,105

Shimadzu, Japan), at the vein midpoints. The veins were approximated as106

circular cylinders having uniform material density equal to that of cuticle,107

1300 kg m−3 (Vincent and Wegst, 2004). Hence, the vein moments of inertia108

were calculated as line integrals along the paths shown in Fig. 1. Contribution109

of the membrane to the moments of inertia was estimated by surface integra-110

tion using a bilinear surface density distribution ρf (x, y) = ρf0 +xρfx + yρfy111

for the forewing, and a uniform distribution ρh(x, y) = ρh0 for the hind-112

wing. The latter simplification is justified by the hindwing being much lighter113

than the forewing (19% of the full wing mass), and the membrane’s weight114

being of about 10% of the hindwing mass. The fitting parameters were115

evaluated by minimizing the r.m.s. difference between the calculated and116

the measured mass of the wing segments, to obtain ρf0/R =0.826 kg m−3,117

ρfx =−0.798 kg m−3, ρfy =0.672 kg m−3, ρh0/R =0.045 kg m−3. Finally, by118

summing up the vein and the membrane contributions, we obtained the fol-119

lowing isometric scaling relationships for the moments of inertia:120

Jxx = 0.0014R5, Jyy = 0.0426R5, Jxy = −0.0010R5, (2)
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where R is in meters and Jxx, Jyy, Jxy are in kg m2. Afterwards, the values121

obtained from (3) are used as input data for CFD simulations.122

Since veins account for more than 60% of the wing mass (Kolomenskiy123

et al., 2019), and our calculation assumes circular piece-wise constant cross-124

section, the approximation error may be significant. One can notice in125

the micro-CT images in Supplementary figure SF1 that some of the veins126

have non-circular cross-section and variable thickness. In addition, stigma is127

treated as belonging to vein number 2. Spatial resolution of the micro-CT128

data precludes accurate modelling of these features. We only measure the129

maximum and the minimum thickness of each vein. The vein thickness de-130

viates by less than 26% from the nominal mid-point diameter. To estimate131

the resulting error, we repeat the inertia calculations 33 times with the vein132

diameters taken randomly within the measured interval. Thus, we obtain133

the standard deviation of the moments of inertia,134

∆Jxx = 0.00006R5, ∆Jyy = 0.00140R5, ∆Jxy = 0.00023R5. (3)

2.4. Three-dimensional kinematic reconstruction135

Free-flight measurements were acquired using a setup that consisted of a136

tunnel with transparent ceiling that was connected with the hive on one end137

and with a feeding area on the other end, see Fig. 3. A feeder filled with sugar138

water solution was installed in the feeding area. The bees were trained to fly139

through the tunnel. Hovering behaviour was observed when a bee was either140

distracted by lights, or approached an obstacle in the middle of the tunnel,141

or preparing to exit from the tunnel. In the duration of the experiment,142

the humidity was near 80% and the temperature was maintained at about143

22 ◦C. The test section in the flight tunnel was illuminated using lights.144

Video recordings were acquired using three synchronized high-speed cameras145

(FASTCAM SA3, Photron, Japan), equipped with CCTV lens (B2514D or146

B5014A, Pentax, Japan) at 2000 fps. The image resolution was set to 1024×147

1024 pixels. The shutter speed varied between 1/10 000 s and 1/5000 s, since148

we changed the position of the cameras and the lights several times during149

the experiment. All three views were used to track the body, but only two150

were used to track the wings. Sample frames from two cameras, with a zoom151

on the insect, are shown in Fig. 4. An extended description of the experiment152

and data acquisition setup can be found in Jakobi et al. (2018).153

We modified the direct linear transform open-source software DLTv5154

(Hedrick, 2008) by introducing the same kinematic model as used in the155
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Figure 3: Flight experiment.

Figure 4: Sample frames from two synchronized video recordings: camera 1 (top row)
and camera 3 (bottom row). Frames 517 and 520 correspond to downstroke, frames 525
correspond to upstroke. Theoretical rigid wing contour lines, shoulder points (plus signs)
and body markers (dots) are superposed on the images.
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CFD solver FluSI (Engels et al., 2016b). Each forewing-hindwing pair is ap-156

proximated as a single solid flat plate that can rotate about the hinge point157

at the shoulder, therefore its orientation with respect to the body is fully158

described with three angles. The body is also assumed rigid, therefore, it is159

straightforward to relate the position of the shoulder points in the labora-160

tory reference frame to the position of the center of mass and the three Euler161

angles of the body.162

Figure 5 explains the definitions of the kinematic angles used in this163

study. During hovering, the body orientation is determined by the inclination164

angle β between the horizontal plane and the longitudinal axis of the body,165

since the body roll is negligibly small and the azimuthal orientation has no166

practical importance. The anatomical stroke plane is inclined by an angle167

η with respect to body such as to best-fit the trajectories of both wing tips168

while respecting the bilateral symmetry. The positional angle φ is defined as169

the angle between the lateral direction in the body reference frame and the170

projection of the wing longitudinal axis on the stroke plane, then θ defines171

the angular elevation with respect to the stroke plane, and the feathering172

angle α measures the wing rotation about its longitudinal axis. Note that,173

when α = 0, the wing is perpendicular to the stroke plane.174

For each video, we first select a hovering sub-sequence such that minimal175

velocity and constant orientation are maintained for at least 5 wing beats. To176

determine the body position and orientation, we either use a triangular tag177

affixed on the dorsal side of the thorax (Jakobi et al., 2018) or morphological178

features as described in Appendix A. Subsequently, we track the wing tips,179

calculate their trajectories in the reference frame moving with the body, find180

the stroke plane angle and the wing kinematic angles with respect to the181

stroke plane. Finally, we use Fourier analysis to derive the closest periodic182

and symmetric representation of the measured wing kinematics. An extended183

explanation of this procedure is provided in Appendix A.184

In total, 7 video sequences have been analyzed, that correspond to hov-185

ering flight of different individuals. These videos have been published in an186

online repository (Kolomenskiy et al., 2018). The measured parameters in-187

clude the wing length R, the wing beat frequency f , the body inclination188

angle β and the anatomical stroke plane angle η, see Table 1, as well as the189

time-periodic wing angles φ, α and θ as functions of the wing beat time frac-190

tion t/T , see Fig. 6, where T = 1/f . In addition, Table 1 contains the values191
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of four derived parameters: the mean chord length192

c = R/AR, (4)

where AR = R2/S = 3.66 is the aspect ratio evaluated using the area S =193 ∫
wing

dxdy = 0.273R2 of the intact wing in Fig. 1, the radius of the second194

moment of area calculated using the same intact wing contour,195

r2 =

√
1

S

∫
wing

x2dxdy = 0.57R, (5)

the reference average wing speed196

U2 = 2Φfr2, (6)

and the Reynolds number197

Re2 = U2c/ν. (7)

The average wing-tip speed is equal to Ut = 1.75U2 and the wing-tip Reynolds198

number is equal to Ret = 1.75Re2. The air density and kinematic viscosity at199

22 ◦C are taken as, respectively, ρ = 1.197 kg m−3 and ν = 1.53×10−5 m2 s−1.200

2.5. Body mass measurement201

Body mass is not required as input data by the present analysis, but such202

information might be helpful for developing better insight into the problem.203
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Table 1: Hovering flight parameters.

Individual R, mm f , Hz Φ,◦ β,◦ η,◦ c, mm r2, mm U2, m s−1 Re2 m, mg
#1 15 145.1 139.4 50 44.7 4.1 8.6 6 1617 –
#2 15.3 132.3 121.4 45.4 47.9 4.2 8.7 4.9 1332 –
#3 18.2 138.2 130.4 30 64.2 5 10.4 6.5 2123 –
#4 15.2 136 137.4 41 53 4.2 8.7 5.6 1534 418
#5 15.6 152.3 139.9 44 45.3 4.3 8.9 6.6 1843 –
#6 14.6 144.6 129.3 47.8 41 4 8.3 5.4 1415 –
#7 15.5 132.7 116.2 36.6 60 4.2 8.8 4.7 1309 –

In a separate measurement, we weighed 13 individuals on a precision balance204

(FZ-300i, A&D, Japan) and measured the wing length using a digital caliper.205

Figure 2(b) shows the results of these measurements. The mass m varied206

between 152 mg and 668 mg. The wing length R varied between 12 mm and207

18.2 mm. An isometric relation208

m = (100.4± 19.2)R3 (8)

fits the data, where R is in meters and m is in kilograms. It follows from209

comparison with (1), for instance, that the full set of wings only weigh as210

little as 0.45% of the bee.211

In addition, we weighed individual #4 immediately after recording its212

flight. The result is included in Table 1. It differs by 18.6% from the isometric213

fit (8), i.e., falls within one standard deviation interval above the isometric214

fit. This is shown using a large cross marker in Figure 2(b). Note that large215

variation of the measured body mass relative to the average trend is expected216

as some bees might be loaded up with pollen and sugar solution.217

3. Dynamical simulation and analysis218

3.1. Numerical bumblebee model219

The computational approach followed in the present study is in continuity220

with our previous work (Engels et al., 2016b,a; Ravi et al., 2016). We employ221

FluSI1, a Fourier pseudo-spectral solver with volume penalization (Engels222

et al., 2016b). In the simulation, the bumblebee is approximated by three223

1Open source code available at https://github.com/pseudospectators/FLUSI
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rigid elements: the body and two wings, which move with respect to each224

other. The wings are flat plates such that the forewing and the hindwing are225

treated as one piece, with the planform shown in Fig. 1 constructed using226

Fourier series representation (Engels et al., 2016b). The wing thickness is227

equal to 0.0125R. An idealized body shape is used, similar to our earlier228

work Engels et al. (2016a). It is composed of analytically described surfaces229

of the head, thorax, abdomen, antennae, proboscis and legs. The distance230

between the shoulder hinge points is equal to 0.351R, which differs slightly231

from the value used by Engels et al. (2016a). The body and the wings are232

isometrically scaled such as to match the wing length R as given in Table 1.233

In all numerical simulations in the present study, the body is fixed in
the laboratory reference frame. Prescribed time-periodic functions φ(t) and
θ(t), as shown in Fig. 6, determine the position of the wing tip. Rotation of
the wing about its longitudinal axis is described by α(t) which is determined
from an elastic hinge model similar to that proposed by Whitney and Wood
(2010). The model employs an equivalent linear torsional spring-damper
element as an abstraction for the combined effect of the compliance and
structural damping of the muscles, shoulder joints and proximal parts of
the wings. We infer the model coefficients from minimizing the discrepancy
between simulated and measured time series of α(t), as we explain later
in Section 3.3. In the numerical simulation, the feathering angle α(t) is
determined from the equation of passive feathering motion,

Jxxα̈ = Maero −K(α− α0)− Cα̇

+ Jxx

[
1

2
(φ̇2 cos2 θ − θ̇2) sin 2α− φ̈ sin θ − φ̇θ̇ cos θ(1 + cos 2α)

]
+ Jxy

[
φ̈ cos θ cosα + θ̈ sinα +

1

2
φ̇2 sin 2θ sinα− 2φ̇θ̇ sin θ cosα

]
, (9)

where Maero is the aerodynamic pitching moment, K is the elastic hinge234

stiffness coefficient and C is the hinge structural damping coefficient, α0 is the235

rest angle. Positive θ is upwards. Typically, α is positive during downstroke236

and negative during upstroke. The moments of inertia are calculated using237

the isometric scaling laws (3).238

The aerodynamic pitching moment Maero is obtained from numerical so-239

lution of the Navier–Stokes equations using a Fourier pseudo-spectral method240

with volume penalization to handle the no-slip boundary conditions on the241

time-varying geometry (Engels et al., 2016b). Geometrical representation of242
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the bumblebee is encoded in a penalization term that enters in the momen-243

tum equation, where the penalization constant is set to Cη = 1.15× 10−4/f .244

The air is treated as a viscous incompressible fluid. The penalized Navier–245

Stokes equations are solved on an equidistant uniform Cartesian grid using246

a Fourier pseudo-spectral discretization. The computational domain is a pe-247

riodic cube with side length 3.2R, discretized using 10243 grid points (over 1248

billion grid points). This yields the resolution of 320 points per wing length249

and 87 points per mean chord length. Impermeable floor and vorticity sponge250

layers on the side walls are applied using volume penalization in order to pre-251

vent spurious recirculation of the flow. The bumblebee body centre of mass252

is offset by a distance of 0.1R above the centre of the domain. This leaves253

enough space (about 1.4R) between the wings and the floor to ensure that254

the aerodynamic ground effect is negligible (Kolomenskiy et al., 2016).255

Strong fluid-structure coupling is used. Equation (9) is transformed256

in a system of two first-order differential equations and discretized using257

the second-order Adams–Bashforth scheme. Since the same time marching258

scheme is also used in the Navier–Stokes solver, it is straightforward to eval-259

uate the right-hand side of the evolution equations, for both the fluid and the260

solid, at the same time level. Knowing the right-hand side at the previous261

and at the current time levels, as well as the values of the state variables262

at the current level, the Adams–Bashforth formula yields the values of the263

state variables at the next time level that ensure globally second-order accu-264

racy with respect to time. The numerical discretization grid step, time step265

and domain size independence checks are presented in the Supplementary266

material S2.267

Quasi-periodic regime is in our case is reached after three wing beat cycles.268

Therefore, we use the results obtained during the 4th wing beat cycle for269

analysis in this study, unless otherwise is stated. One simulation requires270

about 200 hours elapsed time using 320 CPU cores of a scalar type computer271

at JAMSTEC, Yokohama, which consists of HPE Apollo 6000 and HPE272

Apollo 2000 nodes, or it takes 35 hours on 8192 CPU cores of the IBM Blue273

Gene/Q computer at IDRIS, Orsay.274

3.2. Example time sequences275

Let us begin the discussion of the numerical results with focusing on one276

selected flight. We choose individual #4 for which the body mass is known,277

see Table 1. Fig. 7 depicts the time evolution of feathering angle α, vertical278

and horizontal aerodynamic force Faz and Fax, respectively, normalized by279
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the body weightmg, and the aerodynamic power Pa divided by the body mass280

m. Two numerical simulations are compared. In the first, α(t) is prescribed281

as shown in Fig. 6(b). In the second, α(t) is passive, i.e, it is modelled using282

equation (9) as explained in Section 3.1, with K = 2.61 µN m, C = 0 and283

α0 = −1.38◦. These two time profiles are compared in Fig. 7(a). They284

agree qualitatively well in terms of the overall shape, the amplitude and the285

phase, which means that the passive feathering model with only three free286

parameters can fit α(t) adequately. The main difference is in the shape of287

the peaks: they are sharper for the passive (modelled) profile than for the288

prescribed one, especially on upstroke.289

Besides that, there is a small phase lag between the passive and the290

prescribed profiles of α(t). As we show later in this section, although it is291

possible to control the phase by varying K and C, no fine-tuning of the hinge292

model parameters can reduce this phase lag below a certain threshold, which293

appears to be small positive in the case of individual #4 shown here and294

for the individual #2, but almost zero for #1 and small negative for #3.295

Therefore, this small residual phase lag seems to be a measurement error296

rather than a modelling artifact.297

Three-dimensional reconstruction in Fig. 8 provides a visual explanation298

how orientation of the wing changes in time. This motion is indeed very299

typical of the flapping wings of insects in hover. Additional three-dimensional300

visualization of passive feathering rotation and vortical structures in the wake301

is provided as a Supplementary video.302

The vertical aerodynamic force, Fig. 7(b), shows two distinct peaks around303

the middle of each translation phase. They are larger but narrower in the case304

of passive rotation, which is consistent with the differences in α(t) discussed305

above. The pointwise difference in Faz(t) is particularly large on upstroke,306

when α differs by as much as 20◦. However, this overestimate cancels out307

with the underestimates before and after the peak, such that the wingbeat308

time-average force, as shown with the dashed lines, is almost identical in the309

two cases and it is 8% less than the body weight (the last column in Table 1).310

The horizontal force, see Fig. 7(c), shows similar trends with the difference311

that the peak associated with the upstroke is negative, such that the time-312

average horizontal force is close to zero. The body-mass specific aerodynamic313

power, Fig. 7(d), averages to 59 W kg−1 and 63 W kg−1, respectively, in the314

cases of prescribed and passive wing rotation. Note that both values are sig-315

nificantly smaller than previously reported 84 W kg−1 (Engels et al., 2016a),316

obtained using a similar numerical bumblebee model with simplified wing317
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Figure 7: Time evolution of (a) the feathering angle, (b) the vertical and (c) the horizontal
aerodynamic force components normalized with the body weight, and (d) the body-mass
specific aerodynamic power. The time interval shown corresponds to the fourth wing beat
cycle.
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Figure 8: Three-dimensional visualization of passive feathering motion.

kinematics.318

In summary, the passive wing rotation model (9) is successful in repro-319

ducing the main dynamical features. Furthermore, it accurately predicts the320

time-average quantities. With regard to the instantaneous values, discrep-321

ancy can be large. It may be explained by the fact that the model does322

not account for deformation of the wing. In particular, rotation of the hind-323

wing relative to the forewing should be taken into account. This could help324

to improve the fidelity of the three-dimensional tracking and the numerical325

simulations alike. However, it is likely that the simple solid-plate model will326

be sufficient for flight dynamics simulations that mainly depend on wingbeat-327

average forces.328

Let us now discuss sensitivity of the results to the elastic hinge parameters329

K, C and α0. Since these parameters cannot be measured directly, they will330

be evaluated by fitting the model to the experiment data. It will be insightful331

to see the influence of each parameter separately before solving the full opti-332

mization problem. Figure 9 displays such variation of α(t). The parameters333

are varied around the conditions of the previous simulation. While the most334

noticeable effect of increasing K is to reduce the amplitude of α, there is sig-335

nificant asymmetry between stiffening and loosening the hinge with respect336

to the average value K = 2.42 µN m. In addition, hinge loosening entails337

some significant phase delay with respect to the experiment data. The effect338

of increasing C is also to reduce the amplitude of α, however, it is accompa-339
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nied with a phase shift in the opposite direction. The limiting case C = 0 has340

the least phase shift. Finally, varying α0 primarily manifests in the overall341

shift of α(t), i.e., the rest angle of the elastic hinge model controls the time342

average feathering angle with the linear gain being equal to dα/dα0 = 0.41,343

where the overbar stands for time averaging over the duration of one wing344

beat cycle.345

Contributions of each term in the passive feathering equation (9) are
illustrated in Fig. 10. The aerodynamic pitching moment Maero is small
during the reversals near t/T = 0 and 0.5, when the translation velocity of
the wing is small. Maero is large positive in the middle of downstroke, it is
large negative in the middle of upstroke. The inertial pitching moment

Minertial = −Jxxα̈

+ Jxx

[
1

2
(φ̇2 cos2 θ − θ̇2) sin 2α− φ̈ sin θ − φ̇θ̇ cos θ(1 + cos 2α)

]
+ Jxy

[
φ̈ cos θ cosα + θ̈ sinα +

1

2
φ̇2 sin 2θ sinα− 2φ̇θ̇ sin θ cosα

]
(10)

peaks during rapid angular deceleration of the wing after reversal (t/T = 0.1346

and 0.6). Interestingly, acceleration that precedes the reversal is much more347

gradual. The time profile of the restoring torque K(α − α0) repeats that of348

α, and the structural damping torque Cα̇ is identically equal to zero because349

C = 0. By comparing the three non-trivial contributions, it can be concluded350

that the restoring torque of the hinge balances the inertia (mainly Jxxα̈) in351

the beginning of each half-stroke (upstroke or downstroke), and it balances352

the aerodynamic torque in the end of half-stroke.353

3.3. Optimization and statistical analysis354

In this section, we look for the optimal values of K, C and α0 that355

minimize the cost function356

e =
1

T

∫ T

0

(α(t)− αexp(t))2 dt, (11)

where α(t) is the time evolution of the feathering angle obtained from the357

numerical simulation using (9), and αexp(t) is the feathering angle measured358

in the experiment.359

It may be expected that the hinge parameters vary among different in-360

dividuals. In this section, we quantify this inter-individual variability and361

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-90

-60

-30

0

30

60

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-90

-60

-30

0

30

60

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-90

-60

-30

0

30

60

90

Figure 9: The effect of (a) varying K with C = 0 and α0 = −1.38◦; (b) varying C with
K = 2.42 µN m and α0 = −1.38◦; (c) varying α0 with K = 2.42 µN m and C = 0. The
time interval shown corresponds to the fourth wing beat cycle.
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Figure 10: Time evolution of the left wing pitching moment due to the aerodynamic forces
(Maero), inertia (Minertial), hinge stiffness (K(α − α0)), and hinge damping (Cα̇). The
time interval shown corresponds to the fourth wing beat cycle.

determine the values that can be taken as representative of hovering Bombus362

ignitus in general. The full set of 7 individual hovering flights have been363

divided in the training set (#1 to #4) and the test set (#5 to #7). For364

each individual in the training set, a parameter sweep is performed to find365

the optimal stiffness Kopt that minimizes the r.m.s. distance between α(t)366

in the simulation and the experiment, eopt. Prior to the parameter sweep,367

α0opt that ensures equal time-average α in the simulation and in the exper-368

iment, is determined using linear extrapolation of an auxiliary simulation369

with α0 = 0 and the slope dα/dα0 known from previous simulations. Zero370

structural damping, C = 0, is assumed in all cases. Additional simulations371

with K = Kopt, α0 = α0opt and C = 0.66 nN m s confirm that e becomes372

larger than eopt obtained with C = 0. The multivariate optimization in373

Supplementary material S3 also supports this assumption.374

In view of the isometric scaling (1) of the wing mass versus length, it is375

reasonable to introduce a similar isometric scaling for the hinge stiffness,376

K = R3K∗, (12)

that holds for flexible-plate hinges with thickness, width and length scaled377

linearly with R (Whitney and Wood, 2010). We refer to K∗ as the hinge378

stiffness factor. It can be regarded as a composite material property. The379

cost function e for all individuals of the test set is plotted in Fig. 11 with380
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respect to K∗. The optima K∗
opt,i, where i = 1, ..., 4 is the individual index,381

are indicated with circles and included in Table 2. The average stiffness382

factor plus/minus standard deviation is equal to383

K∗
mod =

1

4

4∑
i=1

K∗
opt,i = (0.81± 0.089) N m−2. (13)

Table 2 also contains the values of α0opt of each individual in the training set.384

They average to α0mod = (−0.75± 8.97)◦.385

Let us now verify that these values K∗
mod and α0mod are representative of386

all individuals, including those in the test set. For that purpose, numerical387

simulations are performed with the hinge stiffness calculated using (12) with388

the stiffness factor K∗
mod = 0.81 N m−2, zero structural damping (C = 0),389

and rest angle α0mod = −0.75◦. The results shown in the last two columns390

of Table 2 suggest that these values are indeed representative of all indi-391

viduals since, typically, emod is close to emod. Further, a two-sample t-test392

for equal means without assuming equal variances has been applied. Mean393

emod is equal to 8.178◦ and 9.76◦, for the training and the verification sets,394

respectively. It has shown no significant difference in the mean emod of the395

two datasets (p = 0.23).396

Table 2: Inter-individual variability of the elastic hinge.

Individual Dataset K∗
opt, Kopt, Chopt α0opt,

◦ eopt,
◦ Kmod, emod,

◦

N m−2 µN m µN m
#1 training 0.888 3.00 1 11.69 7.23 2.73 7.44
#2 training 0.722 2.57 0.81 -3.8 9.57 2.89 9.95
#3 training 0.885 5.34 1.18 -9.5 6.33 4.88 6.89
#4 training 0.744 2.61 1.05 -1.38 7.94 2.84 8.43
#5 validation – – – – – 3.08 7.94
#6 validation – – – – – 2.52 10.69
#7 validation – – – – – 2.99 10.64

To evaluate the relative flexibility of the wing under the aerodynamic load,397

Ishihara et al. (2014) calculated the Cauchy number of different dipterans,398

Ch =
4ρΦ2f 2c3r22

K
(14)

using data from multiple sources, and found that Ch varied between 0.19399

and 0.27. Similar values for the bumblebees are included in Table 2, denoted400
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Figure 11: Parameter search for the best-fit hinge stiffness. R.m.s. distance e between
time profiles of measured and computed feathering angle is plotted as a function of the
hinge stiffness factor K∗ for 4 different individuals. Crosses (×) show the computed points,
circles (◦) show the minima in each case. The dash-dot vertical line corresponds to K∗

mod.

as Chopt. They correspond to the optimal stiffness Kopt. Overall, the Cauchy401

number in the present study is significantly larger than reported previously402

by Ishihara et al. (2014) for diptera.403

3.4. Aerodynamic analysis404

The aerodynamic force generation capacity is conventionally measured by405

the lift coefficient406

cL =
L

1
2
ρU2

2Sref
, (15)

where L = 1
T

∫ T
0
Faz(t)dt is the mean vertical aerodynamic force (i.e., lift),407

U2 = 2Φfr2 is the reference velocity and Sref = 2S is the reference area,408

with the wing area S = 0.273R2 and the radius of the second moment of409

area r2 = 0.57R calculated for the intact wing in Fig. 1. The evolution of cL410

with K∗ is shown in Fig. 12, for all individuals in the test set. In all cases, cL411

is an increasing function of K∗ in the range considered here. I.e., cL is small412

when the hinge is very compliant, and cL reaches 2 when the hinge is stiffer413

than normal. It may be expected, by analogy with a flexible wing, that cL414

decreases to zero in the limit of very large K∗. However, in our numerical415
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Figure 12: Lift coefficient as a function of the hinge stiffness factor K∗. The dash-dot
vertical line corresponds to K∗

mod, dashed lines correspond to K∗
opt,i.

simulations, we do not observe this trend even when K∗ is twice as large as416

K∗
opt,i. The values of cL at K∗

opt,i vary between 1.35 and 1.7, depending on417

the individual.418

The energetic efficiency of hovering flight can be measured using the figure419

of merit FM = Pideal/P , where Pideal is the ideal power determined by the420

Rankine–Froude momentum theory as Pideal = 2ρw3
0A0, where A0 = 2ΦR2

421

is actuator disc area and w0 =
√
L/2ρA0 is the induced velocity, and P =422

1
T

∫ T
0
Pa(t)dt is the mean aerodynamic power from the numerical simulation.423

After arithmetic simplification, we obtain a short formula424

FM =
L
3/2

P

1

2R
√
ρΦ

. (16)

The numerical results are shown in Fig. 13. For all individuals, the plots of425

FM(K∗) have visually similar shape with a maximum slightly to the left from426

K∗
opt,i, steep decrease to the left and gentle decrease to the right. It follows427

that the elastic hinge is not exactly tuned to maximize the efficiency during428

hovering, but rather to ensure stable operation in a range of K∗ where FM429

is only slightly less than the maximum. Thus, FM(K∗
opt,i) varies between430

0.17 and 0.19, while the maximum FM is in the range between 0.18 and 0.2.431
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Figure 13: Figure of merit as a function of the hinge stiffness factor K∗. Dash-dot vertical
line corresponds to K∗

mod, dashed lines correspond to K∗
opt,i.

4. Conclusions432

The passive feathering model with rigid wings offers an attractive approx-433

imate solution to the fluid-structure interaction of flapping insect wings in the434

sense of pitching rotation. It requires much less input data than flexible-wing435

models, but still accounts for adaptation of the wing orientation to external436

forcing by adjustment of the feathering angle α, which can be regarded as437

the lowest, and probably the most efficient, mode of elastic deformation.438

In the present study, it is shown that a single hinged plate model, orig-439

inally designed for diptera, also provides a reasonably accurate approxima-440

tion of bumblebee wings composed of forewings and hindwings connected441

by hooks (humuli). Specifically, it produces realistic feathering motion and442

accurate time-average estimates of the aerodynamic performance in hover,443

despite that the instantaneous values of aerodynamic forces may differ sig-444

nificantly between the passive feathering and fully prescribed models. These445

conclusions have been reached on the basis of morphological measurements,446

kinematic analysis of live bumblebees, and high-fidelity numerical simulation.447

Using statistical analysis, typical values of the model parameters have448

been determined. The hinge stiffness can be approximated as K = 0.81R3,449

where R is the wing length in m and the result is in N m. The structural450
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damping coefficient is negligible compared with the fluid damping, i.e., C = 0451

is a fair approximation. The rest angle obtained for different individuals452

shows no clear trend, but the mean value is close to zero, α0 ≈ 0.453

From the aerodynamic perspective, it is found that passive feathering454

provides the required lift-generation capacity for a realistic energetic cost. It455

is interesting that the hinge parameters are not exactly tuned to maximum456

efficiency during hovering, but the stiffness is slightly larger than the optimal457

value. We conjecture that the difference may be interpreted as a safety factor458

that helps to avoid abrupt decrease in the efficiency when flight conditions459

change, but a dedicated study is needed on this point. In addition, it may460

be necessary to re-examine it using a fully flexible wing model, since even a461

slight variation of FM near its flat peak may entail a qualitative change in462

the shape and position of the peak.463

Regarding the hinge stiffness factor K/R3 as a fictitious material pa-464

rameter, one may conjecture that the value determined in hover may be465

adequate for all flight regimes. This opens new perspectives for numerical466

simulation of complex flight maneuvers using only the wing-tip kinematics467

as input data, which is much easier to measure in the experiments than the468

full three-dimensional wing motion. However, elastic element only being a469

mathematical abstraction of the real hinge, its stiffness may depend on flight470

conditions.471

Another possible direction of future research is to improve the model472

for better agreement with the experiments. Potential improvements include473

treatment of the hindwings as separate plates, varying stiffness between up-474

stroke and downstroke (Ennos, 1988; Tanaka et al., 2011), or considering475

nonlinear elasticity.476
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Appendix A. Example of kinematic analysis494

In this Appendix, the three-dimensional kinematic reconstruction process495

is explained with an example. The video sequence selected for the present496

analysis corresponds to the hovering flight #6 in Table 1.497

At first, we track the body. It only moves very little during the entire498

time span of the video. Nevertheless, this small motion should be taken into499

account when calculating the wing angles, because the latter are sensitive to500

movement of the shoulder hinges. Therefore, we first reconstructed the three-501

dimensional motion of the body. Since this individual bee was not tagged,502

we selected three points that can easily be distinguished by morphological503

features. As shown in Fig. 4, point 1 is on the head between the antennae504

(red marker), point 2 is an abdominal pigmentation feature (green marker),505

and point 3 is the rear point of the abdomen (blue marker). Every 10th frame506

of total 1167 frames in each camera view were analyzed. The points were507

manually tracked and their coordinates in the laboratory reference frame508

reconstructed using DLTv5, the result being displayed in figure A.14(a).509

Figure A.14(b) shows the velocity magnitude of each point, calculated using510

central finite-difference approximation. The velocity is no greater than Vg =511

0.023 m/s, and the corresponding advance ratio is equal to µ = Vg/U2 =512

0.0042. This small advance ratio is indicative of hovering.513

The time sequence of almost 6 s is longer than required for digitization514

of the wing motion. We therefore only select a sub-sequence of 40 ms for the515

further analysis, which is shaded in figure A.14(b). The velocity in it is less516

than 0.015 m s−1. During this short time interval, time-varying position of517

the three feature points in the laboratory reference frame is fitted with cubic518

polynomials in order to filter out the digitization noise. In the body reference519

frame, relative position of different points (i.e., the shoulder hinges, the center520

of mass and the three selected morphological features) does not vary in time,521

therefore, it can be determined from prior morphological measurement or522
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head

dorsal

rear

Figure A.14: (a) Trajectories of three points on the body - one on the head, one on
the dorsal surface of the abdomen, and one on the rear end of the abdomen. (b) Time
evolution of the velocity magnitude of these points.

time-averaging over the duration of the entire flight sequence. Hence, after523

reconstructing the three-dimensional motion of the selected morphological524

feature points, we determine the motion of the entire body including the525

shoulder hinge points. The latter are shown in Fig. 4 with cyan and magenta526

plus signs.527

As a next step, we track the wing tips, reconstruct the wing tip trajec-528

tories, convert them to the body reference frame and best-fit a plane, in the529

least-mean-square sense. The morphological stroke plane angle is determined530

as the angle between the normal to that plane and the body longitudinal axis.531

The stroke plane, in our definition, is inclined by the same angle to the body,532

but it passes through the shoulder hinge points and respects the bilateral533

symmetry, as shown in Fig. 5.534

Finally, we determine the time evolution of the wing angles with respect535

to the stroke plane, see Fig. 5 for the definitions. The values of the positional536

angle φ, the elevation angle θ and the feathering angle α are determined for537

the left and for the right wing separately, for every time frame of the selected538

40-millisecond video sub-sequence. It covers slightly less than 6 wingbeat539

periods. A first approximation to φ and θ is calculated using the approximate540

wing-tip coordinates relative to the hinge point, but this is complicated by541

the fact that the wing tips hold no point markers. Therefore, to refine φ and542
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Figure A.15: Time evolution of the wing kinematic angles. Markers show the raw data
points obtained after digitizing each frame. Lines show the result of low-pass filtering and
interpolation.

θ as well as to determine α, the wing contour projection is superposed on543

the video image. It is drawn interactively as the values of φ, α and θ are544

manually adjusted for the best visual fit by varying the angles with small545

steps of 0.36◦. For this purpose, as for the subsequent CFD simulation, we546

use the archetypal intact wing shown in Fig. 1, scaled with the wing length547

R = 14.6 mm determined from the video as the average distance between the548

shoulder and the wing tip. Example visualizations of this fit are shown in549

Fig. 4. The digitized left (resp., right) wing contour outline is shown with a550

cyan (resp., magenta) closed curve. Generally, the approximation is visually551

better during the downstroke (first two frames in a row) than during upstroke552

(last frame in a row), as the wing deformation is greater during upstroke.553

The complete measured time sequences of the wing angles are displayed554

as markers in Fig. A.15. The resolution of 13 points is sufficiently high555

to describe the important repetitive features of the time profiles, such as556

the double negative peak of α during upstroke. The motion is nominally557

periodic, with small deviations that may be due to actuation, wing-wake558

interaction and measurement errors. The next processing step consists in559

low-pass filtering the data at 450 Hz using the 4th order Butterworth filter560

and upsampling the result on a 100-times finer grid using spline interpolation.561

Thus we discard those points that produce unrealistically large accelerations.562

The resulting time profiles are shown with dotted and dashed lines that563

correspond to the left and the right wing, respectively.564
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Figure A.16: (a) Time evolution of the wing angles reduced to the time scale of one
wingbeat (thin lines) and their average (thick lines). (b) Average time profiles of the left
and the right wing kinematics (thin lines) and the average of the two wings (thick lines),
where the time is normalized by the wingbeat period T . Dotted lines correspond to the left
wing, dashed lines correspond to the right wing, and solid lines show the average between
left and right.

From frequency analysis of φ(t) we find that the flapping frequency is565

equal to f = 144.6 Hz. We use this value to divide the sequences shown in566

figure A.15 in cycles of length T = 1/f = 6.92 ms. In figure A.16(a), we plot567

the time evolution of φ, α and θ during each cycle, with t = 0 corresponding568

to the beginning of downstroke. The original profiles are shown with thin569

faded lines. For every time instant t during the cycle, we calculate the average570

of 4 subsequent wingbeats. The average time profiles are shown with thick571

bright lines in figure A.16(a), and thin bright lines in figure A.16(b). These572

time sequences are very close to periodic. There remains less than 10 degree573

difference between the angles of the left wing and those of the right wing,574

and we calculate their average. The result is plotted in figure A.16(b) using575

thick lines. Finally, Fourier analysis of these time sequences is performed.576

The time evolution of φ, α and θ is described with less than 1 degree error577

using, respectively, 4, 5 and 4 harmonics. These coefficients are used as input578

data for the CFD simulation.579

Appendix B. Numerical validation580

Whitney and Wood (2010) conducted experiments with an insect-scale581

mechanically driven artificial wing that, by construction, satisfied the condi-582
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Figure B.17: Wing shape used in the numerical validation study.

tions of the passive rotation model (9). The flapping motion in the direction583

of φ was driven by a piezoelectric actuator, while passive rotation in α was584

allowed by an elastic hinge. These angles, as well as the small out-of-plane585

deviation θ due to compliance, were measured simultaneously with the ver-586

tical force produced by the wing.587

For numerical validation of our solver, we have performed numerical sim-588

ulations of the ‘short hinge’ model of Whitney and Wood (2010) with the589

hinge stiffness equal to K = 2.35 · 10−6 N m. The structural damping is590

negligible small, i.e., C = 0, and the static orientation of the wing is vertical,591

i.e., α0 = 0. Figure B.17 displays the wing shape used in these numerical592

simulations. It is derived from the photographic image shown in Whitney593

and Wood (2010) and closely repeats the outline of the wing membrane,594

except for some simplification near the root. The wing length is equal to595

R = 15.14 mm. Its mass is equal to mw = 0.91 mg. The moments of inertia596

are Jxx = 1.7 · 10−12 kg m2 and Jxy = −3.5 · 10−12 kg m2.597

The time evolution of the positional angle φ and the elevation angle θ used598

for the numerical similation is obtained by Fourier analysis, Gaussian filter-599

ing and periodization of the experiment data. Since the observed motion is600

nominally periodic, this process does not introduce any significant error. Two601

different experiment runs are considered: the ‘baseline’ case with approxi-602

mately symmetric upstroke and downstroke, and the ‘split-cycle’ with fast603

upstroke and slow downstroke. The flapping frequency equals, respectively,604

f = 99.59 Hz and 100.5 Hz, as evaluated from the measured time profiles605

of φ(t). In each case, we have performed two numerical simulations: one606
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with α determined from the passive feathering equation (9), and one with α607

prescribed as a periodic function derived from the experiment data. In all nu-608

merical simulations, the properties of the air are set as ν = 1.53 ·10−5 m2 s−1
609

and ρ = 1.2 kg m−3.610

Let us discuss the ‘baseline’ case first. Time evolution of the kinematic611

angles is shown in Fig. B.18(a). To compare directly with the data presented612

in Whitney and Wood (2010), since we use different sign conventions, −θ and613

−α are shown. The result of our numerical simulation of passive feathering614

rotation, −α, is plotted using a solid blue line. It is in a good agreement615

with the experiment shown with black circles, in terms of the phase and616

the minimum angle. The maximum angle is slightly overestimated which617

may be related to the asymmetry of the vein-membrane assembly or non-618

linear elasticity of the hinge, which are not accounted for in the numerical619

simulation.620

A comparison of the total vertical force F in this case is presented in621

Fig. B.18(b). It is the sum of the aerodynamic and the inertial forces, as622

directly measured in the experiment. The inertial vertical force in the nu-623

merical simulation is evaluated as624

Fi = −mw
d2

dt2
(ycm cosα cos θ + xcm sin θ) , (B.1)

where mw = 0.91 mg is the wing mass, xcm = 5.74 mm and ycm = −1.31 mm625

are the centre of mass coordinates in the spanwise and in the chordwise direc-626

tions of the wing, respectively. When α(t) is prescribed as in the experiment,627

the force F (t) follows a remarkably similar path as in the experiment. In the628

case of passive feathering rotation, when α(t) is modelled, the overall agree-629

ment is still good but the plateaus that correspond to the translation phase630

are noticeably smaller. This is explained by the excess of feathering rotation:631

α predicted by the model during the translation phase is slightly too large.632

The difference appears small in the kinematics in Fig. B.18(a), but it entails633

a significant discrepancy in the forces in Fig. B.18(b). The mean force F is634

equivalent of 74.8 mg in the case of the prescribed motion and 52.8 mg for635

the passive feathering model, to be compared with 71.6 mg measured in the636

experiment. Better agreement can be achieved, presumably, if non-linearity637

and asymmetry are taken into account, or if the linear spring parameters638

are fitted to the measured data (as opposed to being estimated from the639

dimensions and material properties of the elastic hinge).640

The ‘split-cycle’ case is presented in Fig. B.19. Similarly, the peaks of641

31



(a )

(b )

Figure B.18: Baseline validation case. (a) Measured and computed wing kinematics. (b)
Time evolution of the lift.
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α are slightly overestimated, which leads to overall lower lift of the passive642

feathering model. The time evolution of F shows oscillatory behavior due to643

inertia, since α(t) does not plateau, in contrast with the baseline case. These644

oscillations in the simulations and in the experiment agree in phase and in645

magnitude for most part of the wing beat cycle, except for the beginning of646

the cycle. The mean forces are equivalent of 64.9 mg in the prescribed feath-647

ering simulation, 46.6 mg in the modelled passive feathering simulation and648

71.2 mg in the experiment. These validation test cases allow to conclude that649

the model describes the time-varying feathering angle and lift adequately. At650

the same time, relatively small error in the feathering angle, that can be ex-651

plained by difference between theoretical (as used here) and real stiffness of652

the hinge, can have important consequences for force generation. Stiffness653

tests of similar elastic hinges can be found in, e.g., Li et al. (2018). In view of654

this result, it appears important to perform a parameter sweep over a range655

of possible values of the hinge stiffness, as described in the main text of this656

paper.657
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