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Section 1: Reconstruction of bristle distribution at model wing 
Figure S1 shows details on the construction of model wings. If not mentioned otherwise, all wing dimensions are 

normalized to wing length R. The planform is a ‘snowcone’ shape with a circle radius Rt=0.23 at the wing tip and 

two tangents intersecting the membrane at distance Lr=0.054 from the root. The solid membrane is rectangular 

with length Lm=0.77 and width Bm=0.068. Bristles were attached according to two rules: (i) bristles at the wing tip 

that continuously rotated around the tip and (ii) parallel oriented bristles along the sides of the membranous section 

(Fig. S1). The origin of tip bristles is at the centre of a virtual circle (Fig. S1, magenta lines), placed at an offset 

Loff=0.075 from the end of the membrane. The virtual circle has a radius Rt + Loff. Consecutive bristles are rotated 

by increment  and arc length of the virtual circle equal to 2b. Bristle spacing was doubled at the tip of the 

membranous section because we found that bristles interfere at the tip when using a step width b. The angle 

between parallel bristles and membrane was b = 29° and bristle diameter and membrane thickness were 7.7   

10-3. The solid wing had a surface of 0.289 R2. The various geometrical parameters of the model are chosen to 

visually resemble the wings in Fig. 1, and in particular the G. ficorum (thrips) wing. We aim at providing a well-

defined geometrical model for reproducibility and do not expect variations in its parameters to have a significant 

impact on the conclusions of our work. 

 

 
Figure S1. Top: Parameters for the construction of model wings with various bristle spacing b. See text for details. Bottom: 
the various wing models used in the study. 
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The dimensions of the model wing were adopted from the 4-winged species shown in figure 1a. Kikiki huna and 

Tinkerbella nana are the smallest flying insects known so far, with 245 and 354 µm wing length, respectively 

(Table S1) [1]. These species have bristled wings with a small membranous section. Wingbeat frequency and 

kinematics are unknown. The wasp E. formosa was extensively studied by Weis-Fogh [2]. The wasp E. mundus is 

parasitic to the sweet potato whitefly Bemisia tabaci (Hemiptera) that is a phytophagous pest of many agricultural 

crops. E. mundus and E. formosa have hybrid wings that consist of a large membrane with short bristles. The laurel 

thrips Gynaikothrips ficorum (Thysanoptera) is the largest species included in this study. Its wings have numerous 

long bristles and a small solid membrane area. We only considered the forewings of the species in our study 

because the hindwings of wasps are typically smaller than forewings. B. tabaci has 4 similar-sized membranous 

wings. 

 
Table S1. Wing morphology, kinematics, and Reynolds number considered in this study (cf Fig. 1). Bristle length is measured 
at wing tip and characteristic angle of lateral bristles with respect to the wing's longitudinal axis at the shaft's mid length (red, 
Fig. 1). p.c., personal communication with Gal Ribak, Tel Aviv University; n.a., not applicable or unknown; Ref, reference; Re, 
Reynolds number based on Rf. 
 

Species Ref Wing 
type 

Wing length
(m) 

Bristle 
number 

Bristle angle
(degrees) 

Bristle 
spacing b 

Bristle length 
LB 

Wingbeat 
frequency (Hz) 

Re 

Kikiki huna [1] bristled 245 30 61.6 0.06R 0.310R n.a. n.a. 

Megaphragma 
caribea 

[3] bristled 286 32 77.9 0.054R 0.280R n.a. n.a. 

Tinkerbella nana [1] bristled 354 40 50.6 0.048R 0.289R n.a. n.a. 

Eretmocerus 
mundus 

[4], 
p.c. 

hybrid 600 78 46.6 0.016R 0.057R 273 7 

Encarsia formosa [2, 5] hybrid 642 82 64.8 0.02R 0.055R 361 10 

Bemisia tabaci p.c. solid 1012 0 n.a. n.a. n.a. 131 7 

Gynaikothrips 
ficorum 

p.c. bristled 1460 173 54.9 0.0125R 0.101R 196 24 

Model wing  bristled n.a. 9 - 99 61 see text 0.224R see text 4 - 57 

 

 
Section 2: Bristle elasticity and bending 
In our simulation we modelled a solid wing because calculations suggested negligible bending during flapping 

flight. The following approach describes how we derived an upper estimate of bristle bending at maximum wing 

flapping velocity. The bristle is modelled as a clamped beam sticking out at the wing tip (Fig. 1). The bristle is 

attached to a membranous section and faces a uniform load. The bending line tangent at the attachment point has 

thus zero slope. The bristle (beam) with length L and diameter dB is immersed in air with density =1.225 Kgm-3 

and kinematic viscosity =1.225 m2s-1. We used L=198 m, is the maximum bristle length measured in a bristled 

wing, and dB was 1.82 m (Paratuposa placentis [6]; cf. figure 1). Second moment of bristle inertia, I, was derived 

from the equation: 

4
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 Bd
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 .    (eq. S1) 

In root-flapping wings, maximum instantaneous velocity is largest at the wing tip. Thus, for simplicity, we 

modelled bristle bending in response to a uniform, constant, maximum free stream velocity u . If u  equals wing 

tip velocity utip=Rf, flow velocity is 0.16 ms-1 (E. mundus), 0.23 ms-1 (E. formosa), and 0.28 ms-1 (G. ficorum). At 

a maximum stroke amplitude of 180°, these velocities convert to 1.0, 1.45, and 1.76 ms-1, respectively, using 

utip=2 Rf (see section 5, Table S1). For comparison, own measurements in Paratuposa placentis (body length 

395 μm) suggest a maximum wing tip velocity of ~1.4 ms-1 and ~0.45ms-1 at the radius of gyration. Elasticity was 

considered using Young's modulus E=5.5 GPa for the cuticle of insect wings [7]. 

 

We further assumed that the mass of the bristle is negligible and thus its inertial force in front of the forces exerted 

by the fluid. Bristle bending was estimated from drag based on a coefficient for a cylinder's 2D circular cross 

section [6, 8], i.e.: 
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with BRe  the Reynolds number for the bristle and defined as: 

 BRe... 1250ln577216050

1


  and 


B

B
du

Re  .   (eq. S3) 

Force per unit bristle length, F', is eventually derived from conventional aerodynamic theory, written as: 

.duC'F BD
2

2

1
       (eq. S4) 

Due to viscous coupling between bristles, bending a single bristle differs from bending a group of bristles. As 

viscous coupling increases with decreasing Reynolds number, this coupling needs to be considered. Cheer and 

Koehl [9], however, suggested that the force on a bristle in a group is always smaller than on an isolated bristle. 

We thus modelled only a single bristle and eqs. 2-5 thus provide an upper estimate for maximum bristle bending. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S2. Bristle tip deflection angle as a function of the free stream velocity and bristle diameter. Vertical dashed line is mean 
velocity at the radius of gyration in Paratuposa placentis. 

 

For static bending, maximum wing tip deflection of a bristle ymax is:  

.
EI

L'F
ymax 8

4

     (eq. S5) 

Figure S2 shows beam tip deflection as a function of bristle diameter and velocity. In Paratuposa placentis (orange, 

Fig. S2), maximum bristle deflection is 10 m or ~5-times the bristle diameter. The latter value converts into less 

than ~3° root-tip deflection of a single bristle. Thicker bristles bend increasingly less because their stiffness scales 

with ~ 4
Bd , while aerodynamic load only with ~dB. Even very small bristles with dB=1 µm and facing 0.45 ms-1 

flow velocity deflect only little (~3.8°). At ~1.4 ms-1 wing tip velocity of Paratuposa placentis, a 1 m thin bristle 

deflects ~15°. We conclude that bristles should not significantly deflect during flapping flight and may be thus 

considered as stiff for CFD modelling and robotic experiments. 

 

Section 3: Wing kinematics 
Lift-based kinematics were modelled by functions previously proposed for wing flapping by Toomey [10]. This 

family of functions uses the angles 𝜙 and 𝛼 in which parameter 𝜎థ controls the shape of  (sinusoidal to sawtooth) 

and 𝜎ఈ the shape of 𝛼 (sinusoidal to heaviside). We used values of = 5 and  = 4. The functions (Fig. 2a, top) 

are given as:  

𝜙 ൌ
ଵହ଴°

ଶ

ீ೟ା଴.ହ

୫ୟ୶ ሺ|ீ೟ା଴.ହ|ሻ 
    (eq. S6) 

𝛼 ൌ െ45° ⋅ 𝐺௥ሺ𝑡ሻ     (eq. S7) 
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with the auxiliary functions [10]: 
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The wing moved in a horizontal stroke plane with zero deviation angle, and stroke amplitude was 150° with 

symmetrical wing rotation (±0.2 cycle duration) at the stroke reversals. Mean wing tip velocity 𝑢௧௜௣ was 5.2Rf with 

f  the wingbeat frequency.  

 

Drag-based kinematics were modelled according to the kinematics of the tiny beetle Nephanes titan [11]. Wing tip 

path is a figure-of-eight motion that is divided into two phases per half stroke. The wing's angle of attack is 

approximately zero during stroke reversals and 90° during the up- and downstroke. We modelled this kinematics 

by functions proposed by Suzuki [12]. In their notation, the functions (Fig. 1a middle) are given as  

 
𝜙ᇱ ൌ 𝜙௠ cosሺ2𝜋𝑡ሻ    (eq. S10) 

𝛼ᇱ ൌ 0.5 ⋅ 𝛼௠ሺ1 ൅ cosሺ2𝜋𝑡 ൅ 𝛾ሻሻ   (eq. S11) 

with 𝜙௠ ൌ 90°, 𝛾 ൌ 90° and 𝛼௠ ൌ 90°. Using a nonlinear optimization toolbox available in python, this 

convention has been converted to the three Euler angles as defined in [13]. The resulting functions cannot be given 

in analytical form and are shown in Fig. 1a (bottom). The mean wing tip velocity 𝑢௧௜௣ is 7.5 Rf. 

 

Section 4: Clap-and-fling kinematics 
For clap-and-fling kinematics we used lift-based kinematics with 180° flapping amplitude. Thus, clap-and-fling 

conditions occurred twice in each stroke cycle. At the stroke reversals, the wings were parallel with 0.04R distance 

between the left and right wing surface. Angle of attack during translation was 45° with wing rotational phases at 

the reversals lasting ±0.2 stroke cycle. Feathering angle (orange, Fig. S3) at the transitions was slightly smoothed 

compared to the single wing kinematics to avoid wing-wing collisions. 

 

Section 5: Reynolds number 
 To allow comparisons with previous studies in insect flight, Reynolds number Re was determined from 

reference velocity U and calculated as: 

𝑅𝑒 ൌ
௎ோ 

ఔ
,                                                               ሺeq. S12ሻ  

with  the kinematic viscosity of air. In our study, we computed flows at Reynolds numbers 4, 14, and 57 that 

covers the Reynolds numbers estimated for insects in figure 1a-g up to the size of a fruit fly. In contrast to previous 

studies, reference velocity in eq. S12 was derived as U=Rf and is thus independent from stroke amplitude. We 

chose this velocity scale because the stroke amplitude is unknown in these animals. Length scale in eq. S12 is 

wing length R instead of mean wing chord [14] because 𝑐௠ is difficult to reliably define in the bristles wings shown 

in Fig. 1. Conventional Reynolds number Re= utip cm with utip=2fR (, stroke amplitude)and mean wing 

chord cm is 1.7 and 2.4-times higher for the lift- and drag-based kinematics, respectively, than the values above. 

Reynolds number for bristles was calculated as:  


Rfd

Re B
bristle  ,    (eq. S13) 

with dB the diameter of a bristle and f the flapping frequency.  
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Figure S3. Lift- and power coefficients during two stroke cycles of two wings  while flapping left and right one with clap-
fling-sweep kinematics. Inset on the right shows clap-and-fling kinematics with horizontal flapping angle (blue), rotational 
(orange; feathering, angle of attack) angle, and vertical heaving motion (green). Reynolds number is Re=14.  
 
 

Section 6: Numerical simulation 
6.1 Numerical method 
 The WABBIT code uses explicit second order finite differences to solve the artificial compressibility 

equations [15]: 
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    (eq. S15) 

 This approximation of the incompressible Navier-Stokes equations [16] introduces a constant artificial 

speed of sound C0 much larger than fluid velocity. Its explicit nature avoids solving large linear systems in every 

time step. Boundary conditions are imposed using the volume penalization method that has extensively been used 

to study insect flight [17]. It treats a solid wing as a porous medium with vanishing permeability C. An indicator 

function  is used to distinguish between the fluid (where  = 0) and wing domain (where  = 1). Near the 

boundary, a smoothing layer is required in case of moving objects such as a wing. Permeability is coupled to grid 

resolution x by: 

 





2
xK

C  ,    (eq. S16)  

with K a constant that depends weakly on Reynolds number. In the present computation K was 0.5 because of 

low Reynolds number. We used a similar technique to model non-reflecting outflow boundary conditions at the 

outer border of the cubical computational domain of size L. This so-called sponge term sp/Csp imposes far field 

conditions and absorbs outgoing pressure waves. 

 Despite the inhibition of turbulence at low Reynolds numbers, numerical simulations of bristled wings 

are challenging because of the vast range of scales. Flow structures like the leading edge vortex, for example, are 

several orders of magnitude larger than the scale of an individual bristle that hinders three-dimensional simulations 

[18]. To overcome this limitation, we here developed a numerical framework using wavelet-based grid refinement. 

Starting from an uniform coarse grid, we doubled the number of grid points Jmax times until reaching the desired 
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precision. Grid refinement was done in a block-based fashion. The computational grid thus consists of blocks of 

size 3
sB , with spatial resolution: 

1

2







s

J

B

L
x

max

 ,    (eq. S17)  

in the zones of maximum refinement (Fig. S4). Second order lifted Cohen-Daubechies-Feauveau wavelets (CDF 

2/2) are used for grid refinement in locations at which the magnitude of the wavelet coefficients was larger than a 

threshold C . Refinement was executed as follows: we first performed a coarse simulation using a low value of 

Jmax with numerical parameters 0C  and C  based on previous numerical simulations [19]. Refinement was then 

improved by increasing 0C  and decreasing C , C  according to convergence properties. This procedure ensured 

convergence of the solution toward a wing composed of solid, impermeable material immersed in an 

incompressible, viscous fluid. 

 

The coupling of permeability and resolution yields small values for permeability that imposed small and thus an 

elevated number of time steps t in previous studies [20]. We circumvented this problem in bristled wing 

simulations by employing custom Runge-Kutta-Chebychev (RKC) schemes for explicit time integration [21-22]. 

These schemes allowed us to set t dependent on 0C , and in particular as t > C . Moreover, we only simulated 

wings and excluded the animal body. The origin of wing rotation was at the centre of the numerical domain, all 

simulations started from a quiescent fluid and were simultaneously computed by up to 480 CPU cores of a 

supercomputer. 
 

 

 

 
Figure S4. Numerical method for the simulation of bristled wings. (a) Spatial domain for computing, showing complete 3D 
grid with grid lines representing blocks and not points. Each block comprises 23 grid points. The grid shows the increasing 
local grid refinement towards the domain centre that holds the modelled wing. (b) Two-dimensional cut, showing the wing and 
individual grid points. (c) Zoom on the grid points near the bristles 
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6.2 Temporal discretization with Runge-Kutta-Chebychev methods 
Like fourth-order Runge-Kutta schemes, RKC methods are explicit multistep methods. RKC family schemes are 

characterized by number of stages s and damping parameter  . Regardless of s, a fixed number of 7 registers is 

required for the right hand side, making this method more memory-efficient than Krylov subspace methods. For 

each simulation, we used the following custom RKC scheme: we programmed a one-dimensional discrete operator 

for the artificial compressibility equation (ACM) in Python. This operator had the same second order discretization 

as used in the complete 3-dimensional simulation. The underlying grid was Cartesian and equidistant. As uC 0 , 

we neglected the nonlinear term in ACM. The discrete operator included the Laplacian, pressure gradient, 

penalization, and the transport term of the pressure equation. The complex eigenvalues   of this operator matrix 

were used to determine the best RKC scheme. Specified time step was: 

0C

x
CFLt

  ,    (eq. S18)  

with CFL=0.75. For all scaled eigenvalues t2  with a safety factor of two, we computed growth rate Pj to 

determine stable RKC schemes [22]. We eventually selected the RKC scheme with least stages (smallest s) and 

largest   because RKC-schemes with small   have an irregular stability region. Figure S5 illustrates the operator 

spectrum and stability regions of the chosen best RKC scheme of a bristled wing at Re=24. The selected RKC 

scheme has a significantly larger stability region along the real axis than the RK4 scheme that is shown for 

comparison. Taking into account the fact that the RKC scheme performs 7 function evaluations per time step while 

the RK4 uses only 4, the overall speed-up for the RKC amounts to a factor of approximately 10. 

 

 
Figure S5. Stability region of best Runge-Kutta-Chebychev scheme (solid line, s=7,  =1.76) compared to a classical Runge-
Kutta 4 scheme (dashed line). Blue dots are eigenvalues of a 1-D, discrete, 2nd order ACM operator with C0=20, =6.95 10-2, 
K=0.5, Jmax=7, L=4.6, and Bs=23. Data are scaled to a time step corresponding to CFL=0.75. RKC scheme significantly extends 
the stability region on the real axis. This simulation of a bristled wing at Re=24 requires 1,211,370 function evaluations for a 
RK4 but only 119,466 for the RKC scheme. 

 
6.3 Validation by a solid rectangular wing 
To validate the numerical approach, we used a procedure proposed by Suzuki et al. [12] and refer to previous 

studies for details [23-24]. The test was done on a single, rectangular flapping wing with finite thickness h = 

0.04171R. The wing moved in a horizontal stroke plane at hovering conditions, with positional )tcos(m  2  

and feathering angles   ))tsin(ctanh(ctanhm   21 . Angles were  80m ,  45m , and , 33.c   (Fig. 

S6a). Free stream velocity was zero and Reynolds number based on mean wing chord (cm=0.4167R) 100 (see 

section 4). The size of the computational domain was 6R   6R   6R that is slightly larger than in previous 

publications [19-20]. At the outer border of the domain, we imposed homogeneous Dirichlet conditions, 0u  

and 0p , using sponge technique (see section 6.1). We performed a series of three simulations corresponding 

to coarse, medium and fine resolutions, with artificial speed of sound, penalization and sponge constants coupled 

to x to ensure convergence (Fig. S6b). The selected RKC scheme was s=4 and  =20, and block size Bs=23. 

Figure S6c shows lift and drag coefficients obtained from this computations including results from the literature. 

The simulations at medium and fine resolution well agree with results from the literature but at coarse resolution 

the errors for lift are slightly larger than for drag. 
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Figure S6. Validation of numerical method. (a) Wingbeat kinematics at hovering flight conditions. (b) Numerical parameters 
used in simulations with fine, medium, and coarse resolution. (c) Time evolution of normalized lift (vertical force) and 
normalized drag (horizontal force) and comparison with results from the literature (see text for details).  
 

6.4 Validation and grid convergence for simulations of bristled wings 
Our bristled wing modelling approach has been validated in a previous study [6]. We compared simulated forces 

of a revolving bristled wing with experimental data. That study yielded a set of numerical parameters that ensured 

good agreement between the simulation and the experiment, in terms of the lift and the drag. 

 

For further validation, we performed convergence tests of our numerical model using bristled wing with 

b=0.054R at Re=14 and flapping with lift-based kinematics (Fig. S7). The single wing was placed in the centre 

of a cubic domain with size L=4.6 because previous simulations showed that the influence of walls is negligible 

for this domain size. Wing thickness was 7.710-3 wing length. Coarse resolution in bristled wings thus compares 

to fine resolution in the previous test on the membranous wing (cf. section 6.3). Figure S7a shows the numerical 

parameters and figure S7b the three components of aerodynamic forces acting on the bristled wing. Data 

convergence suggests that a resolution 5x/h   is appropriate for the tested Reynolds number. As flow scales 

increase with decreasing Reynolds number, the above resolution is also appropriate for smaller Reynolds numbers. 
 

 
Figure S7. Grid convergence test for a bristled wing with b=0.054 at Reynolds number Re=14. (a) Numerical parameters 
used in the simulations. (b) Time evolution of the x, y and z components of aerodynamic forces for coarse, medium and fine 
resolutions. t, time; T, stroke cycle. 
 

(a) (b)

(c) 

(a) 

(b) 
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An additional validation, in which we compare simulated forces of a revolving bristled wing with experimental 

data can be found in a previously published study [6]. 
 
6.5 Influence of the domain size 
Prior to performing our simulations, we did preliminary tests on the significance of domain size on our numerical 

results. We tested the solid wing at 𝑅𝑒 ൌ 4 because this case yields (smallest 𝑅𝑒) is most sensitive to changes in 

the domain size. We performed simulations with cubic domain sizes of 𝐿 ൌ 4.6, 9.2 and 18.4 in which we kept 

resolution constant. Figure S8 illustrates that the resulting lift force is virtually identical in all three cases and that 

thus the domain with 𝐿 ൌ 4.6 is sufficient for our simulations. 
 

Figure S8. Significance of domain size L on force. Lift is generated by a solid wing in domains with three different sizes (cf. 
inset). t, time; T, stroke cycle. 
 
 
Section 7: Rankine-Froude efficiency 
Rankine-Froude efficiency is the ratio between the theoretically smallest and the actual aerodynamic power for 

lift production assuming an idealized, homogeneous and turbulence-free jet downward wake in the vertical 

direction. We computed this parameter according to Ellington [25] as:  
 

  1

02


 *

aero

*
z*

z P
A

F
F


 ,    (eq. S19) 

with  the density of air and the appropriate total actuator disc area for two wings, i.e.: 

2

2

0
R

A


 .     (eq. S20) 
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