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Abstract

High resolution direct numerical simulations of rotating and flapping bumblebee wings are
presented and their aerodynamics is studied focusing on the role of leading edge vortices and the
associated helicity production. We first study the flow generated by only one rotating bumblebee
wing in circular motion with 45◦ angle of attack. We then consider a model bumblebee flying
in a numerical wind tunnel, which is tethered and has rigid wings flapping with a prescribed
generic motion. The inflow condition of the wind varies from laminar to strongly turbulent
regimes. Massively parallel simulations show that turbulence does not significantly alter the
wings’ leading edge vortex (LEV), which enhances lift production. Finally, we focus on studying
the helicity of the generated vortices and analyze their contribution at different scales using
orthogonal wavelets.
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1 Introduction

Numerical modeling of flapping insect flight receives considerable attention and is motivated by
the growing interest in miniaturization of unmanned air vehicles, since flapping-wing flight is a
bio-inspired alternative to fixed- and rotary-wings. Insects have wings with sharp edges, which
means that the aerodynamic forces, that are necessary for flying, are typically associated with flow
separation and vorticity production. Techniques for extra lift generation, like the clap-fling-sweep
mechanism, are used by many insects and have been revisited in [17].

Previous research on the flow generated by flapping wings indicates the important role of the
leading edge vortex [23, 4]. This vortex has a conical structure due to the three-dimensional motion
of the wings. Vorticity is produced at the sharp leading edge, and outwards velocity (from the
root to the tip of the wing) develops above the suction surface of the wing, see, e.g., [24, 16, 18].
Such alignment of the vorticity and the velocity has important consequences for the dynamics of
the vortex. On one hand, the excess vorticity is constantly transported into the wing tip vortex
rather than being shed periodically from the leading edge [24]. On the other hand, the swirl angle
is large and the vortex can burst [25]. Swirling flows are characterized by strong helicity, which is
defined by the scalar product of velocity and vorticity vectors and corresponds to their alignment
or anti-alignment. Consideration of the helicity dynamics in flows over flapping or revolving wings
can therefore bring important insights into the processes that determine the flow topology. For
instance, in [13], helicity was used as a criterion to characterize bursting of the leading edge vortex
on a rotating wing.

Helicity has received much attention in the topological fluid dynamics community to measure
the linkage and knottedness of vortex lines in the flow. For a review we refer for instance to
[28]. In the turbulence community helicity has been used to characterize three-dimensional swirling
coherent structures, which correspond to flow regions of maximum helicity, see, e.g., in [9]. This local
alignment or anti-alignement of velocity and vorticity implies that the nonlinear term of the Navier–
Stokes equations is depleted and thus the nonlinear energy transfer is slowed down. Therefore such
structures tend to persist coherently in time [29]. An example for flows with maximum helicity are
Beltrami flows, which correspond to eigenfunctions of the curl operator and are hence solutions of
the steady Euler equations.

To get insight into the scale disctribution of helicity we decompose the velocity and vorticity into
orthogonal wavelet bases. Wavelets are localized functions in scale and space and allow analyzing
flow fields efficiently. Thus the scale-dependent helicity, introduced in [34], can be computed. A
review on wavelet based statistical measures for fluid and plasma turbulence can be found in [10].

The aim of this work is to examine the helicity dynamics in flows over model insect wings in
connection with the effects that were previously described in terms of the vorticity and the velocity.
We propose helicity as a new diagnostics to study the vortices generated by flapping and revolving
wings. First, we investigate a simplified configuration of an unilaterally rotating bumblebee wing
and perform high resolution numerical computations. The flow fields are studied and, in particular,
the leading edge vortex is examined. Second, we analyze high resolution numerical simulation data
of a flapping bumblebee flying in turbulent flow, presented in [6]. We use the orthogonal wavelet
decomposition of the flow field to analyze the production of helicity at different scales, which is then
quantified by the wavelet spectrum of helicity and its spatial variability.

The manuscript is organized as follows: In section 2 we describe, for reasons of self-consistency,
the bumblebee model with rigid wings and the computational set-up. The wing kinematics and
parameters can be found in the cited references. The numerical method, which is a Fourier pseudo-
spectral method with volume penalization, is briefly recalled too. The computational results are
reproducible as the “FluSI” code is open source [7]. The definition of helicity, together with its
spectral decomposition and the scale-dependent helicity using orthogonal wavelets are also given.
Computational results for rotating and flapping bumblebee wings are presented and subsequently
analyzed in section 3. Conclusions of our findings are drawn in section 4.
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2 Bumblebee model, numerical method and helicity

2.1 Bumblebee model

A model bumblebee, already used in previous work [6], is chosen among the variety of flying insects,
since the flow it generates while flying remains in a range of Reynolds number which can be computed
by DNS (Direct Numerical Simulation) using HPC (High Performance Computing). We consider a
bumblebee (bombus terrestris) as typical representative for medium-size insects. Its characteristic
parameters are: wing length 13.2 mm, frequency 152 Hz, mass 175 mg, and it flies, when tethered in
still air conditions, at a generic Reynolds number Re = 2060. Bumblebees are known to be relentless
all-weather foragers [33, 31] and thus encounter a wide range of flow conditions from laminar to
fully turbulent [6].

2.1.1 One revolving wing

Prior to analyzing the complete insect model, we focus in this part on a commonly used reduced
model, which consists of a single, revolving wing. This canonical setup is often used to study the
leading edge vortex [18, 12, 11, 13]. We fix the angle of attack to α = 45◦ (i.e., the feathering angle,
for details see Figure 1 and [7]). The rotation angle varies as

φ (t) = Φ̇
(
τe−t/τ + t

)
,

which is the same as used in previous work [18]. After a transient time, τ = 0.4, the rotation
angle grows linearly in time. The wingtip velocity is utip = RΦ̇ in the steady rotation regime. We
normalize the wing length R and set Φ̇ = 1, thus utip = 1. The Reynolds number is conventionally
defined as Re = utipcm/ν [22], where cm = A/R = 0.304 is the mean chord length, and it is set to
the same value (Re = 2060) as the flow generated by the tethered bumblebee flying in still air that
we will study in the following sections. Note that the Reynolds number and the wingshape planform
are the same as in [6]. Figure 1 (a) illustrates the setup. The wing revolves around a hinge placed
at the center of a domain of size 4× 4× 2 wing lengths, which is discretized using 1024× 1024× 512
grid points.

2.1.2 Two flapping wings

The bumblebee flaps its wings at Reynolds numbers of approximately 2000 at forward flight speed
of 2.5 m/s. We developed a ‘numerical wind tunnel’ and placed the animal in a 6R×4R×4R large,
virtual rectangular box. The computational domain is discretized with 680 million grid points and
the three-dimensional Navier–Stokes equations are solved by DNS on a massively parallel computer.
The volume penalization method is used to handle the no-slip boundary conditions on the time-
varying geometry. The mean inflow velocity accounts for the equivalent forward flight speed of the
tethered insect. For simplicity we model the wings as flat rigid plates with prescribed kinematics. To
model atmospheric turbulence, we use homogeneous isotropic turbulence (HIT) as turbulent inflow.
HIT is characterized by the turbulent kinetic energy, the integral length scale and its Reynolds
number. We vary the turbulence intensity, Tu = u′/u∞ defined as the root mean square (rms) of
velocity fluctuations normalized to flight velocity, by altering the energy content of the turbulent
perturbations superimposed to the mean flow. The entire procedure allows us to study insect flight
from laminar to fully-developed turbulent flow regimes.

2.2 Numerical method

Numerical simulations of the flow generated by insects have to face two major challenges. First, as
insects fly by flapping their wings, the geometry of the problem is complicated and varies in time,
implying that the no-slip boundary condition for the Navier–Stokes equation has to be imposed on
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2.3 Helicity, helicity spectra and scale-dependent helicity

Helicity is a quantity introduced by Betchov in [3], important to study the dynamics turbulent flows.
In [30, 27] is was shown that energy and helicity are two conserved quantities of the incompressible
Euler equations. For a comprehensive review on helicity we refer to [28]. Considering the velocity
field u and the corresponding vorticity ω = ∇×u, the kinetic helicity, H(x) = u ·ω, can be defined,
see, e.g., [30, 27]. The helicity yields a measure of the geometrical statistics of a turbulent flow and
allows us to quantify its chirality. It changes sign when applying a mirror symmetry to the reference
frame (transforming it from left to right handed). Integrating the helicity over space one obtains
the mean helicity H = 〈u · ω〉.

The relative helicity

h(x) =
H

|u| |ω|
(4)

corresponds to the cosine of the angle between the velocity and the vorticity at each spatial position.
The range of h thus lies between −1 and +1, corresponding to anti-alignment and alignment of the
velocity and the vorticity vector, respectively.

Energy and helicity balance equation

Similar to the dissipation of energy (in the absence of forcing), dtE = −2νZ where E =
1/2

∫
|u|2dx and Z = 1/2

∫
|ω|2dx are respectively the energy and enstrophy, mean helicity satisfies

a balance equation,
dtH = −2νHω (5)

where Hω = 〈ω · (∇× ω)〉 is the mean helicity of vorticity (also called superhelicity) assuming
absence of helical forcing. In viscous flows we have dissipation and generation of helicity, while in
the inviscid case (ν = 0) the Euler equations conserve the mean kinetic helicity. Contrary to energy
neither helicity of velocity nor helicity of vorticity are positive definite quantities. The point-wise
helicity H(x, t) of velocity satisfies the equation [19],

∂tH + u · ∇H = −∇ · (ωp) +
1

2
∇ · (ω|u|2) + ν(∇2H − 2(∇u∇ω)) (6)

This shows that for the helicity dynamics both the nonlinear and the viscous terms locally play a
role, either in enhancing or diminishing the helicity.

Energy and helicity spectrum

Computing the Fourier transform of the velocity and the vorticity, denoted by ·̂, the isotropic
energy and helicity spectra can be defined,

E(k) =
1

2

∑

k=|k|

|û(k)|2 , H(k) =
∑

k=|k|

û(k) · ω̂(−k) . (7)

Note that H(k) is also real valued, but a signed quantity, and by construction we have
∑

k≥0E(k) =

E and
∑

k≥0H(k) = H which justifies that E(k) and H(k) are called the spectral density of energy
and helicity, respectively. Applying the Cauchy-Schwarz inequality, it follows that |H(k)| ≤ 2kE(k),
which motivates the introduction of the relative helicity spectrum |H(k)|/(2kE(k)) ≤ 1. In [19] it
has been shown to fall off linearly in wave-number for large k, restoring thus the mirror symmetry
of the flow at small scales in the case of isotropic turbulence.

Scale-dependent energy and helicity

Decomposing velocity and vorticity into orthogonal wavelet series, contributions at scale j can
be obtained (for details see, e.g., [10]), which corresponds essentially to bandpass filtering. Those
contributions are denoted by uj and ωj , respectively.
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The scale-dependent energy can thus be defined as

Ej(x) =
1

2
uj(x) · uj(x) (8)

and integrating over x yields the mean energy Ej at scale 2−j , which is called energy scalogram.
Summing Ej (or Ej plus integration) over scale we obtain the total energy E =

∑
j Ej =

∑
j 〈Ej〉.

Analoguously the scale-dependent helicity can be defined as

Hj(x) = uj(x) · ωj(x) (9)

which was introduced in [34] in the context of isotropic turbulence. The scale-dependent helicity
preserves Galilean invariance, though the kinetic helicity itself does not. Integrating Hj over x

yields the mean helicity Hj at scale 2
−j , which we call helicity scalogram. The corresponding mean

helicity is obtained by summing Hj (or Hj plus integration) over scale, H =
∑

j Hj =
∑

j 〈Hj〉,
due to the orthogonality of the wavelet decomposition.

The scale-dependent relative helicity can be defined correspondingly as

hj(x) =
Hj

|uj | |ωj |
(10)

and can be used to analyze the probability distribution of the cosine of the alignment angle [34].
The scale 2−j can be related to the wavenumber kj as

kj = kψ2
j , (11)

where kψ =
∫∞
0
k|ψ̂(k)|dk/

∫∞
0

|ψ̂(k)|dk is the centroid wavenumber of the chosen wavelet (kψ = 0.77
for the Coiflet 12 used here). Thus the scale-dependent energy and helicity can be directly related
to their corresponding Fourier spectra.

The wavelet energy spectrum can be obtained using the scalogram and eq. (11),

Ẽ(kj) =
1

2∆kj
〈Ej〉, (12)

where ∆kj = (kj+1 − kj) ln 2 [26, 1]. It is thus directly related to the Fourier energy spectrum
and yields a smoothed version [8, 26]. The orthogonality of the wavelets with respect to scale and
direction guarantees that the total energy is obtained by direct summation, E =

∑
j Ẽ(kj).

The wavelet helicity spectrum can then be obtained likewise

H̃(kj) =
1

2∆kj
〈Hj〉, (13)

and again summation over j yields the total mean helicity. We anticipate that the wavelet helicity
spectrum is a smoothed version of the Fourier helicity spectrum.

The spatial variability of the wavelet energy and helicity spectra at a given wavenumber kj can
be quantified by the standard deviation, defined as

σ[Ej ] =
1

2∆kj

√
〈(uj · uj)2〉 − (Ej)

2 , σ[Hj ] =
1

2∆kj

√
〈(uj · ωj)2〉 − (Hj)

2 . (14)

Thus the flow intermittency can be quantified. This is not possible using Fourier spectra as all
spatial information is lost. The spatial variability of the energy spectrum can be related to the
scale-dependent flatness, defined as the ratio of the fourth- to the second-order moment of the scale
dependent velocity, as discussed, e.g., in [10]. Increasing flatness values for decreasing scale, i.e.,
values larger than three which are obtained for a Gaussian distribution, are attributed to the flow
intermittency.
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3 Numerical results

3.1 Flow generated by a revolving bumblebee wing

This section deals with a flow generated by a bumblebee wing which steadily revolves around a
hinge point with a constant angle of attack, cf. Fig. 1 (a). The general spirit is inspired by
the experimental work documented in [13], where a leading edge vortex on a revolving plate is
investigated. The vortex can burst but still remains attached to the wing, i.e., there is no LEV
separation, and helicity can be used to characterize this bursting.
We first visualize the helicity H(x) and vorticity magnitude |ω(x)|, at three different instants,
for two different flows, corresponding to Re = 206 and 2060, respectively. For both flows the wing
motion starts from rest in a quiescent fluid and a vortex is formed. The wing accelerates until t = 0.4
and then rotates at a constant angular velocity. Fig. 2 shows the vorticity magnitude |ω (x)| at
t = 1.0, which corresponds to an early phase of the steady rotation. The left box corresponds to
the low Reynolds number flow and the right box to the high Reynolds number flow. In both cases,
a LEV is formed, but the quantitative scale for vorticity is reduced in the viscous case. A tip vortex
forms as well in both cases. The topological reconnection of the LEV and the tip vortex contains
a curious transition from the positive helicity in the LEV core to the overall negative helicity in
the wing tip vortex. The outwards axial flow in the LEV is driven by the centrifugal force and the
axial pressure gradient produced the conical shape of the vortex. The axial flow in the wing tip
vortex is created by entrainment of the fluid behind the moving wing. Consequently, the helicity
changes sign near the wing tip. Later on, at t = 6.0, the differences in the vorticity fields of the
two cases become quite remarkable, as the higher Reynolds number case develops much finer flow
features near the wing tip, which are inhibited by the viscosity in the other case. It is also noted
that a coherent leading edge vortex is visually less easily defined in the low viscosity case. The
visualization of helicity density h (x) = u · ω in Fig. 2 looks qualitatively similar to the vorticity
magnitude regarding the appearance of fine structures. The tip vortex is helical with a negative
value of h, while the region near the root until midspan features positive values of h. In the high
Reynolds case, a strongly helical leading edge vortex is visible at t = 1.7, which becomes incoherent
towards the tip. At t = 6.0, more than half of the wing features an incoherent, burst leading edge
vortex. We note at either Reynolds number that no vortex shedding occurs, meaning that the
leading edge vortex remains attached to the wing.

This LEV bursting becomes more clearly visible when integrating the helicity density over a
control volume above the suction side of the wing, where the leading edge vortex is found. This
value is shown in Fig. 4 (top). From vanishing helicity due to the quiescent initial condition, the
integral value H =

∫
Ωtop

u · ω dV follows a qualitatively different evolution for the two Reynolds

numbers considered. In the viscous case, H is negative throughout the simulation and builds up
until around t = 3.55 (φ = 180◦), remaining constant around -0.08 afterwards. By contrast, the high
Reynolds number flow first builds up positive H until a maximum is reached at t = 1.8 (φ = 81◦),
then rapidly drops to a constant, negative value very close to the viscous case. The breakdown of
positive helicity is a consequence of vortex bursting.

As emphasized in [13], the consequences for the force production are marginal. Figure 4 (bottom)
shows both the integral force, computed as F =

∫
χ (u− us) /Cη dV [2], as well as the pressure

contribution Fp = −
∫
∇pdV for both cases. Their time evolution is qualitatively similar, and a

steady force is produced after φ = 90◦. Figure 3 displays two-dimensional sectional plots of the
vorticity magnitude, spanwise velocity magnitude and helicity density at three time instants for
different spanwise positions. At t = 1, we observe the formation of a conical LEV core above the
suction side of the wing at all three spanwise locations. Large positive spanwise vorticity in the core
is collocated with the large outwards spanwise velocity, yielding large positive helicity density. In the
LEV feeding sheet, however, the helicity is already changing sign from positive over the proximal
part to negative over the distal part of the wing. This may be an early sign of the developing
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breakdown instability. At t = 1.7, the proximal part of the wing still supports a compact conical
core. However, the LEV core bursts over the distal part. This is seen by thickening of the core and
and emergence of smaller secondary structures that wrap around the primary core. The helicity is
still positive, but not as large as before the burst.

By t = 6, the LEV has reached its statistical equilibrium state. It begins as a laminar conical
vortex from the root of the wing and bursts at around 1/3 of the wing length, forming a series of
3d strongly helical trailing vortices (ribs) which are perpendicular to the LEV.

Let us note that our results are essentially not frame dependent, because the vorticity associated
with changing between the laboratory reference frame and a moving reference frame of the wing is
of order 1, but the vorticity in the vortices is of order 100, i.e., two orders of magnitude larger.

Garmann and Visbal [11] point out the co-existence of the burst instability of the LEV core and
the Kelvin–Helmholtz instability in the feeding LEV sheet. While the LEV burst is obvious in our
numerical simulations, the Kelvin–Helmholtz instability is not apparent, possibly because the shear
layer transition point is too far from the rotation axis at Re = 2060. The two instabilities may have
different scaling with the Reynolds number, and this question needs further investigation.

Figure 5 illustrates the evolution of the relative helicity as a function of the spanwise position
for Re = 206 (left) and Re = 2060 (right). The horizontal axis in each of the panels corresponds to
the spanwise position r, and the vertical axis corresponds to time t. Thus, by looking at the color
of a selected row of pixels on the diagram, one can see how the helicity density varies along the
wing at a given t, or by looking at a selected column of pixels one can see how the helicity density
at a given r varies in time.

Let us first discuss the low Re case. At startup, t < 5, the helicity density is negligibly small,
which means that, even though some strong vorticity may be produced at the sharp edges, no
significant axial flow has developed in the vortex cores. After t = 5, the positive helicity builds up
in the LEV, and negative helicity builds up in the wing tip vortex. The wing tip vortex expands as
time progresses, until saturation after t = 30.

At the larger Re, the diagram is similar to the extent that helicity is positive in the LEV,
negative in the wing tip vortex, and the two regions develop in time until saturation at about the
same time t = 30 and the same radial position r = 160. However, the magnitude of helicity is about
3 times as large as in the low-Re case. This is probably related to the enhanced axial flow in the
high-Re LEV, and overall larger vorticity production in that case.

The wavelet energy spectra (Fig. 6, left) in log-log representation and helicity spectra in lin-log
representation (Fig. 6, right) show the scale distribution of energy and helicity, respectively. They
yield similar information as the Fourier spectra, however the wavelet spectra are less influenced by
the mask function, in particular at small scales, used in the computations to impose the no-slip
boundary conditions. We observe that both the energy and helicity values grow in time and that
the maximum magnitude is at the same wavenumber, k = 5, where also a peak in the kinetic energy
is observed. The corresponding standard deviations (dashed lines) illustrate the spatial fluctuations
of energy and helicity. We find that small energy and helicity values at large k exhibit nevertheless
large fluctuations, which is a signature of the flow intermittency.

Visualizations of the scale-wise helicity together with the energy are presented in Figure 7 at
t = 6. The (positively) helical leading edge vortex is well visible at scales 2−5 and 2−6, while the tip
vortex, visible at larger scales, is predominantly negative. However, positively helical structure are
also present in the tip vortex at all scales. Also, a negatively helical secondary LEV core is visible,
adjacent to the primary positive LEV at scales 2−6 and 2−7. The secondary core is rotating in the
opposite direction to the primary core, see, e.g., [11]. Fine scaled energy contributions are located
near the wing, while the far field features energy at relatively larger scales. This is not surprising,
since vortical structures at smaller scales decay faster because of viscous dissipation.
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Fig. 4: Rotating wing. Time evolution of helicity, lift and drag at Re = 206 and 2060. Top: Helicity
H =

∫
Ωtop

u ·ω dV , where Ωtop = [−0.35,+0.15]× [0, 1]× [0, 1] is a cubic control volume on the top

surface (suction side) of the wing, as visualized by the inset. Middle: lift force is split into total
and pressure contribution. The total value computed as Fz =

∫
Ωs
χ (u− us) /Cη dV and pressure

contribution Fpz = −
∫
Ωs

∇p dV . Bottom: the corresponding drag force.
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Fig. 5: Rotating wing: evolution of relative helicity, integrated in the chordwise plane, as a function
of the spanwise position r on the wing, for Re = 206 (left) and 2060 (right).
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Fig. 6: Rotating wing at Re = 2060: Wavelet energy (left) and helicity (right) spectra (continuous
lines) together with their corresponding standard deviation (dashed lines) at three different times,
t = 1.0, 1.7 and 6.0, computed using orthogonal Coiflet 12 wavelets.
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