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ABSTRACT

English abstract

The present thesis aims to investigate three dimensional turbulence gener-

ators inspired by fractal trees. For this purpose three different multi-scale

fractal trees are designed and 3D-printed. In the development process of the

structures a focus is set on desired dominant vortex shedding frequencies

behind individual cylindrical elements of the tree which should match the

wing-beat frequencies of small insects like flies, bumblebees and butterflies

in latter experiments. A model wind-tunnel is build and used to conduct

PIV-measurements in the x-y-plane at different heights and distances behind

the trees. Their wakes are characterized by mean flow, turbulence intensity

and vorticity. Furthermore, measurements with a spruce and a yew-tree are

conducted for comparison with real foliage. Furthermore, direct numerical

simulations (DNS) are conducted and analyzed for comparison and cross-

validation.

Zusammenfassung auf Deutsch

Die vorliegende Arbeit hat zum Ziel, Turbulenzgeneratoren, inspiriert von

fraktalen Bäumen, zu untersuchen. Hierfür werden drei verschiedene frak-

tale Bäume entworfen und 3D-gedruckt. Während der Entwurfsphase der

Strukturen wird ein Fokus auf dominante Frequenzen im Spektrum gelegt.

Die Frequenzen periodischer Wirbelablösungen hinter individuellen zylin-

drischen Baumelementen liegen im Bereich der Flügelschlagfrequenzen von

Insekten, wie Stubenfliegen, Hummeln und Schmetterlingen, was für spätere

Experimente mit denselben von Vorteil ist. Ein kleiner Windkanal wird gebaut

und für PIV-Messungen in der x-y-Ebene an verschiedenen Höhen und Ab-

ständen hinter den Bäumen benutzt. Die Strömung wird durch mittlere

Geschwindkeitsfelder, Turbulenzintensität und Wirbelstärke charakterisiert.



xvi Abstract

Weiterhin werden Messungen an einer Fichte und Teile von Eiben zum Ver-

gleich durchgeführt. Zusätzlich werden Direkte Numerische Simulationen

(DNS), ebenfalls zum Vergleich und zur Kreuzvalidierung der Ergebnisse,

durchgeführt.



1 INTRODUCTION

Nature as the most persistent, iterative optimization algorithm ever to be

seen has, over a large number of generations, come up with highly efficient

end elegant ways to solve problems. For example, flight has mostly been

addressed by development of periodical, flapping motion of flexible wings,

as it can be observed with birds and insects. It is to be expected that this

approach offers significant advantages, such as high efficiency and probably

more advanced control- and adaption-mechanism in order to effectively re-

act to changes in the surrounding area.

Man made flying machines operate with a different approach of employing

either rotating or fixed, mostly rigid, wings, as to be observed with heli-

copters and aircraft. Recent advancements in the technology for flight vehi-

cles, especially in the context of micro-air vehicles (MAVs), require for more

advanced methods in order to fulfill today’s requirements. Ideally, this can

be achieved by copying and adapting highly optimized methods from na-

ture.

The present work lies within the framework of ’Aerodynamics of Insect Flight

In Turbulent Flow’ (AIFIT), a French-German research project, funded by

the Deutsche Forschungsgemeinschaft (DFG) and the Agence Nationale pour la

Recherche (ANR). Its overall objective is to improve the understanding of how

insects maintain control in highly turbulent environments. Furthermore, ad-

vantages of flapping flight in comparison to well-known flight with fixed,

rigid wings are to be characterized.

The objective of this thesis is to identify and characterize perturbations these

insects are facing in their natural environment, in particular at relatively low

airspeeds of 1− 5 m/s. In order to do so, tree-inspired turbulence generators

are designed in a fractal manner in order to introduce different length- and

diameter-scales. In addition, the resulting complex three-dimensional struc-

ture can be described by only a few parameters. Desired properties of the

tree-generated turbulence are high turbulence intensities and dominant fre-

quencies of the same magnitude as the wing-beat frequency of insects, such

17



18 Introduction

as fruit flies, bumblebees and butterflies. Measurements of the 3D-printed

trees, immersed in laminar flow, are conducted, in a wind tunnel built up for

the present work, applying particle image velocimetry (PIV). Furthermore,

numerical simulations of the same setup are conducted for means of com-

parison. Additionally, measurements with real foliage are conducted.



2 LITERATURE REVIEW:

FRACTAL TREE TURBULENCE

The literature shows numerous experimental and numerical studies of dif-

ferent fractal grids Mostly square, I (or H) and square fractal grids are inves-

tigated [3, 12, 15, 17, 18]. Only little could be found concerning fractal trees as

turbulence generators [5, 29], even less three-dimensional structures [1, 4]).

Furthermore, studies concerned with turbulence within real plant canopy

[10, 25, 34, 38] are considered.

Van Hout et al. carried out PIV measurements in the field combined with

the usage of meteorological sensors within and above a mature corn canopy,

while their measurements don’t support Finnigan’s proposition of a spectral

shortcut [10] but rather match the classical -5/3-slope in the spectrum. PIV-

data of Zhu et al. [38] suggest a similar behavior within the canopy, while

larger deviations from the -5/3-slope are found for smaller wavenumbers.

Furthermore, Van Hout et al. found a strong correlation between the dis-

sipation rate and the out-of-plane component of the vorticity, even though

their measurements are too coarse for calculating the dissipation rate from

velocity gradients or to calculate the vorticity with sufficient accuracy.

Poggi et al. [25] examined canopy sub-layer turbulence with Laser-Doppler

Anemometry for different canopy densities. For their experiments, they in-

vestigated arrays of vertical steel cylinders with 0.12 m in height and 4 mm

in diameter with Reynolds-numbers of around 175000. Their findings sug-

gest that, given the connection between mean flow and vortex shedding fre-

quency (Strouhal’s relation), dominant frequencies in the spectrum within

the trees exist. They furthermore argue that these peaks are connected to en-

ergy short-circuiting to scales of around the small wakes behind the thin steel

rods. Additionally, they find the mixing length being linked to the vortex di-

ameters. They derive an intermediate model covering the range between no

and full presence of canopy. Without strong presence of canopy, the behav-

ior resembles a rough sub layer. In the other case, strong presence of canopy,

19



20 Literature Review: Fractal Tree Turbulence

mixing-layer behavior is found. They show that the a dominant mechanism

of the internal flow field is the von-Kármán vortex street, which is period-

ically perturbed by sweep events which, themselves, are influenced by the

canopy density.

In their paper Hurst and Vassilicos [15] examine 21 different planar frac-

tal grids, cross-, I- and square-fractal grids, in two different wind tunnels

with hot-wire anemometry. They find a strong dependence of homogene-

ity, isotropy and decay properties from the fractal dimension, which is <2

for all their grids. Their grids have blocking ratios of up to 25 %. They find

that the turbulence peaks after some distance behind the grid and then de-

cays in an exponential manner. This contradicts the classical description of

(non-fractal-) grid turbulence, which is done using a power law [26]. Their

findings might not be applicable to the present study, since now the fractal

turbulence generators are three-dimensional and therefore peaking at one

certain distance is not expected.

In their paper Cafiero et al [3] examine the near wake of jets with fractal cross-

, I- and square-fractal grids with PIV in a water tunnel at a Reynolds-number

of 28000. They analyze the coherent structures and, via Proper Orthogonal

Decomposition, find that about 70 % of the modal energy can be linked to the

vortex shedding from the largest bars. Gomes et al. [12] experimentally in-

vestigated space-filling planar fractal square grids using PIV in water. They

introduce a novel generalization for the wake-interaction length scale with

a turbulence intensity scaling which, together, collapse the data for several

measurements with different grids. It includes free-stream turbulence, as

well as grid geometry and therefore is an extension to the findings of Hurst

and Vassilicos.

Another study of fractal-generated turbulence was carried out numerically

by Laizet and Vassilicos [18]. They perform Direct Numerical Simulations

for one regular grid and three different fractal square grids with a Reynolds-

number of 300 at the smallest diameter, which corresponds to a free-stream

velocity of 2.5 m/s. Their results suggest that the vorticity field is more clus-

tered when generated by fractal grids, as well as a higher vorticity and tur-

bulence intensity for fractal square grids in general. They highlight the ge-

ometrical imprint of the fractal structure far downstream. Again, they dis-
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tinguish between a production region close behind the grid and the decay

region located further downstream. Another study of was carried out by

Laizet and Vassilicos [17] in their paper Multiscale Generation of Turbulence,

which offers a great introduction into fractals and their use in science. They

also highlight the very limited market penetration of concepts and products

employing fractals. Their study consists of Direct Numerical Simulations

with the Immersed Boundary Method and suggests that RANS and also LES

models cannot be used to model fractal-generated turbulence because it dif-

fers from know forms of turbulence in fundamental ways. Mostly, the TKE-

Dissipation rate depends on the Reynolds-number. The Kolmogorov phe-

nomenology as underlying principle for LES sub-grid modeling and RANS-

models assumes independence from the Reynolds-number. Their results still

match the previously discussed studies on fractal cross-, square and I-grids,

while they highlight the dependence on the Reynolds-number.

Two dimensional fractal trees were examined by Chester et al [4, 5] and

Schröttle [29]. Chester et al. considered high-Re flows only with a focus

on the drag-forces for both 2D-trees and also a 3D-Tripod-tree. Their find-

ings include that the drag coefficient significantly increasis with the fractal

dimension. They performed Renormalized Numerical Simulations, making

use of the trees self-similar scales in order to reduce computational cost. In

[29] 16 fractal Pythagoras trees are modeled as immersed boundaries within

a Large Eddy Simulation, which resolves the vortex shedding behind indi-

vidual branches up to scales of the atmospheric surface layer. Their focused

on thermal effects, while the tree-crowns were set to be 3.35 K warmer than

the ambient air. They show that the TKE power spectra follow the -5/3 slope

for the trunk, crown. For large wavenumbers the internal boundary layer

above the canopy massively loses energy, which the authors see as an indi-

cator for energy being injected into the flow at a characteristic scale of the

trees from wakes behind their respective branches.

In his dissertation Bai [1] thoroughly investigated turbulence behind a three-

dimensional fractal tree, as well as for a large array of them, for a Reynolds-

number of 71300 in water using PIV. With matching of refractive indices
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and invoking translucent trees, three branches per each of the four gener-

ations, measurements inside the canopy were carried out. Mean velocity,

Reynolds-Stresses and the downstream development are discussed. Struc-

tures of the tree can be found in the near-wake velocity and turbulence pro-

files. A measured mixing length study indicates good agreement with the

Boussinesq eddy-viscosity principle. Still, the variety of length scales is chal-

lenging for modeling mixing lengths and should therefore, according to Bai,

be incorporated into the model.



3 FRACTAL TREES

In the present work turbulence generators inspired by fractal trees are thought

up, employed, both experimentally and in simulations, and discussed. The

key benefit of this approach is the possibility to fully describe the structures

with only few parameters which are shown in table 3.1.

d0 some arbitrary diameter to start with
L0 some arbitrary length to start with
N number of branches per generation
Jmax number of generations
ρ variation of length between consecutive generations

(i.e. Li+1 = Li · ρ)
δ variation of diameter between consecutive generations
[α, β, γ] Euler angles defining orientation of each branch in the

reference system of the parent structure

Table 3.1: Parameters describing general fractal trees

The generation of such a self-similar tree is done recursively:

First, the trunk, which is not part of the fractal structure yet, is created. From

its tip, the first generation (J = 1) of branches is created. At the tip of each

branch, the next generation of branches emerges, using the local coordinate

system of its parent branch. This procedure repeats until the desired level of

generations, Jmax, is reached. The tree can then be seen as a superposition of

the trunk and its branches.

Furthermore, an important index providing information about self-similar

structures was introduced by MANDELBROT in 1967, the fractional dimension

[19, 20]. He defines it as follows:

D = −
log(N)

log(r(N))
. (3.0.1)

Applying rules for computing logarithms and taking into account that r, the

fractional ratio, is independent of the dimensions, thus constant, eq. 3.0.1

23
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reads

D =
log(N)

log( 1
r )

. (3.0.2)

The present trees are three-dimensional structures with a constant ratio be-

tween consecutive generations regarding length as well as diameter. There-

fore, two fractional dimensions can be defined,

Dρ =
log(N)

log( 1
ρ )

(3.0.3)

Dδ =
log(N)

log( 1
δ )

, (3.0.4)

where Dρ denotes the fractional dimension regarding the length ratio ρ, whereas

Dδ is calculated using the diameter ratio δ. As suggested in [37], 2 < D < 3

is valid for a large variety of tree foliage. This is included in the design of the

trees, compare table 3.2.

3.1 Design & Choice of Parameters

The following section is intended to discuss the choice of parameters for the

different trees. For the purpose of finding suitable trees, different combina-

tions of parameters are investigated. Properties such as a space-filling struc-

ture or the presence of a variety of different length- and diameter-scales are

desired. Furthermore, the branches must not be too far apart from each other

in order for their wakes to interact and thus generating turbulence more ef-

fectively. The tree is assumed to be rigid while leaves are neglected. At this

point it remains unclear whether the spectral shortcut, as suggested by FINNI-

GAN in [10] applies without the foliage but only with the branches.
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3.1.1 First Approach in MATLAB

A script in MATLAB is used to construe the trees and to get a basic idea about

their appearance. It is used for a first, yet rough, estimate of vortex shedding

frequencies given the simplifying assumption of no interaction between the

branches’ wakes, i.e. neglecting all nonlinear behavior. The script yields a

visualization of the tree (compare figures 3.1.1 - 3.1.3) and an ASCII-file con-

taining all points, xbase = (xb, yb, zb) and xtip = (xt, yt, zt) for each branch, as

well as the corresponding radii. The idea of the script, however, is to gener-

ate the tree by simply sticking the cylindrical branches’ centerlines together.

Intersections between cylinders at tip-end connections are not present yet,

since they are only lines.

Three sets of parameters turned out to match the desired criteria to an ade-

quate degree. These sets, specific trees, were decided to get examined more

thoroughly.

The first tree, the H-tree, is designed to be space-filling, yet it only vaguely

resembles a tree. However, it consists of nine different branch-lengths and

-diameters and offers small distances between branches. It is inspired by the

two-dimensional, area-filling, tree presented in [22] and by its tree-dimensional

versions, also shown in [22], [36] and [35].

The second tree, called Pyramid-tree, appears to look much more like a tree,

in particular a coniferous tree. Still, it resembles a pyramid, which gave it

its name. It can again be characterized as space filling and consists of five

generations. Its two-dimensional representation was found in [5] and [22].

The third structure, the Spherical tree, consists of branches whose tips, for

each generation, seem to create a roughly spherical shape. Its general ap-

pearance was inspired by figures presented in [22] and [35]. In contrast to

the two other trees, its internal structure is not space-filling. Yet, and again

in contrast to the previous structures, the branches have inclination angles

which differ from 90◦. Within each of the seven distinct spherical areas, the

distance between branches is smaller than in between these spheres.

An isometric view, as well as an orthographic view of each tree can be found

in figures 3.1.1 - 3.1.3. Especially the orthographic views clarify the naming
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and show the area-, respectively space-filling properties of both the H- and

the Pyramid-tree. Furthermore, the evolution of the H-TREE is presented in

figure 3.1.4.

(a) Isometric view (b) Orthographic view

Figure 3.1.1: H-tree created in MATLAB

(a) Isometric view (b) Orthographic view

Figure 3.1.2: Pyramid-tree created in MATLAB
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(a) Isometric view (b) Orthographic view

Figure 3.1.3: Spherical tree created in MATLAB

Figure 3.1.4: Evolution of the generation of the H-tree from J = 1 − 9
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3.1.2 Vortex Shedding Frequency and Branch Diameters

The maximum and minimum branch diameters are derived using STROUHAL’s

relation. It connects vortex shedding frequency fshed behind a cylindrical

branch to its diameter d, the free-stream velocity u∞ and the STROUHAL-

number. Written in the form which is used here, it reads

d =
St · u∞

fshed
. (3.1.1)

Given the free-stream velocity of 1 - 4 m/s, which can be realistically achieved

with the experimental setup available, maximum and minimum values for

the local REYNOLDS-number can be derived, which is commonly defined as

Re =
u∞ · d

ν
. (3.1.2)

In order to achieve maximum perturbations for the insects, the vortex shed-

ding frequencies are desired to match their wing-beat frequencies. As stated

in [6], the average wing-beat frequency for butterflies is at around 11 Hz.

Bumblebees, according to [7], have an average wing-beat frequency of 150

Hz, while [21] indicates a value of 218 Hz for fruit flies. Hence, shedding

frequencies in the range of 10 - 250 Hz are desired.

For reasons of experimental feasibility and dimensions of the wind-tunnel,

the maximum diameter is determined to dmax = 0.02 m, which applies for the

trunk and the first generation. The minimum diameter is dmin = 0.0015 m

and applies for the last generation, respectively the finest branches. The

lower limit for the branch diameter is chosen according to the limitations

of the 3D-printing process.

For air (ν = 15 · 10−6 m2/s) equation 3.1.2 yields Remax = 5333 (for u∞ =

4 m/s and d = 2 cm) and Remin = 100 (for u∞ = 1 m/s and d = 1.5 mm).

According to [2], within the present range of REYNOLDS-numbers, period-

ical vortex shedding occurs. Since the ST-number depends on RE, results

from [9] are used to include this dependency into the estimate. This yields

Stmax = 0.208 and Stmin = 0.165 with an average Stmean = 0.186, which, for
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simplicity, is used for further calculations. Again, combinations of maximum

and minimum values for u∞ and d are used to calculate the frequencies. It

yields fshed,max = 496.8 Hz and fshed,min = 9.3 Hz. The range of shedding

frequencies, hereby still completely neglecting nonlinear behavior, includes

the insects’ wing-beat frequencies and therefore seem to be suitable for the

task of maximum perturbations for the insects’ flight.

The maximum and minimum branch diameters are used to calculate the di-

ameter ratio δ using the relation

δ =
dmin

dmax

1
Jmax−1

. (3.1.3)

Table 3.2 summarizes the relevant parameters for the discussed trees, includ-

ing the complete set of angles, the dimensions in x- ,y- and z-direction, as

well as lenght and diameter ratios. Furthermore, the overall number of cylin-

ders forming the tree and the number of finest branches, N Jmax , are presented.

The branch is rotated applying rotation matrices in the following manner,

where R denotes the rotation matrix around the respective axis and M is the

rotation matrix of a branch: Mout = Rx(γ) · Ry(α) · Rz(β) · Min. Details about

the script generating the trees can be found in the appendix.
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H-tree Pyramid-tree Spherical tree
Jmax 9 5 4
N 2 5 7
Ltrunk 24 cm 22.7 cm 16.3 cm
L0 12 cm 11.35 cm 14.2 cm

ρ 2−
1
3 1

2
2
5

δ 0.723 0.523 0.422
Dρ 3 2.322 2.124
Dδ 2.141 2.485 2.254
α [◦] [90 90] [0 90 90 90 90] [0 65 65 65 90 90 90]
β [◦] [0 180] [0 0 90 180 270] [30 0 120 240 60 180 300]
γ [◦] [90 90] [0 0 0 0 0] [0 0 0 0 0 0 0]
width dx 37.2 cm 44.7 cm 39.4 cm
depth dy 33.3 cm 44 cm 44 cm
height dz 42 cm 44 cm 39.9 cm

∑(cylinders)total 1023 3902 2801

∑(cylinders)Jmax 512 3125 2401

Table 3.2: Relevant parameters for the trees

3.1.3 Generation of 3D-STL-mask with FLUSI

The ASCII-file created by the MATLAB-script can be read by FLUSI, the

fluid-structure interaction code developed by Thomas Engels [8]. It gen-

erates cylinders from lines with the given centerlines and radii, sets hemi-

spheres onto the blunt ends of each cylinder and superimposes them. It also

creates a smoothing layer, such that the mask function χ(x, y, z) is 0 outside

the tree domain and 1 inside of it. In between, the smoothing layer ensures

smooth transition, which is beneficial for numerics [16]. An iso-surface of

the mask-function at χ = 0.5 yields the surface of the tree.

The surface data obtained from the mask generation is presented in figures

3.1.5 - 3.1.7.
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(a) Isometric view (b) Orthographic view

Figure 3.1.5: H-tree created with FLUSI

(a) Isometric view (b) Orthographic view

Figure 3.1.6: Pyramid-tree created with FLUSI
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(a) Isometric view (b) Orthographic view

Figure 3.1.7: Spherical tree created with FLUSI
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3.2 3D-printing and Assembly

This section is intended to discuss the preparations, execution and results of

the 3D-printing process. Since each tree is larger than the printing chamber,

the models have to be subdivided into smaller pieces in order to ensure print-

ability. The trees’ fractal properties allow dividing the tree into few different

parts, which can each be printed multiple times.

3.2.1 Preparation in SOLIDWORKS

The STL-surface mesh from FLUSI can easily be divided into several sub-

meshes, but since it is only points and vertices without underlying (exact)

shapes or constraints, manipulation in a controlled manner is found to be

work-intensive. Especially since pin-hole connections between the parts of

the trees are desired. In order to bypass the inconvenient process of model-

ing solid parts onto surface data, the whole structure is modeled in SOLID-

WORKS. Again, the fractal properties of the structures are used by applying

mirroring and patterns. As stated in section 3.1.3, each trunk and first gen-

eration of branches has a diameter dmax = 2 cm. These parts are, for saving

cost and time, made from wooden rods. The models are shown in figures

3.2.1 - 3.2.3. Wooden parts are indicated with brown color.

(a) Isometric view (b) Orthographic view

Figure 3.2.1: H-tree created with SOLIDWORKS



34 Fractal Trees

(a) Isometric view (b) Orthographic view

Figure 3.2.2: Pyramid-tree created with SOLIDWORKS

(a) Isometric view (b) Orthographic view

Figure 3.2.3: Spherical tree created with SOLIDWORKS



Fractal Trees 35

In addition to brown wooden rods, identical parts are given the same color.

In 3.2.3 it is clearly visible that besides the wooden rods, there are only three

different parts to be printed: The connector between the trunk and first gen-

eration of branches (gray) and seven connectors between the first generation

and the smaller structures (green). The 49 smaller structures, which include

the second, third and fourth generation, complete the tree (red). The other

trees follow the same underlying principle. In table 3.3 the number of com-

ponents which have to be assembled in order to create the tree can be seen.

H-tree Pyramid-tree Spherical tree
Wood 2 6 8
3D-print 191 31 57
Total 193 37 65

Table 3.3: Number of components of the trees

3.2.2 Printing the H-tree

The components for the H-tree are printed using a Formlabs Form 1+ 3D-

printer. Detailed information about axis resolutions, build volume dimen-

sions, laser specifications and the software PreForm can be found in [27].

Figure 3.2.4 exemplarily describes the procdution stages of a printed com-

ponent. In figures 3.2.4b and 3.2.4c the support structures created during the

process, in order to prevent the components from bending or even breaking,

are shown. The surface of a printed component is displayed in more detail

in figure 3.2.5, where the different layers are clearly visible.
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(a) 3D-model (SOLIDWORKS)
(b) Model with supports (PREFORM

printing software)

(c) Print with support structures (d) Print ready for assembly

Figure 3.2.4: From the 3D-model to the printed component

Figure 3.2.5: Surface structure of a printed component
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Unfortunately, the accuracy, especially the preservation of angles (90◦ and

180◦) in the pin-hole connectors, was not satisfactory. Hence, there is a con-

siderable discrepancy between the resulting tree and the exact model. The

deviations add up because the structure consists of a large number of printed

parts (191). Since a good accordance between the printed tree for experi-

ments and the geometry for simulations is needed to make meaningful com-

parisons, no measurements with the H-tree are conducted. In figure 3.2.6 the

inaccuracy is clearly evident.

Figure 3.2.6: The printed and assembled H-tree
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3.2.3 Printing the Pyramid- & Spherical Tree

In contrast to the H-tree, the Pyramid- and spherical tree are printed using EOS

Formiga P100 with a significantly larger building volume and better results in

terms of accuracy. For that reason, as shown in table 3.3, less, but larger com-

ponents are needed to construct the trees. Densely packed building volumes,

arranged in MATERIALISE MAGICS 19.01, are presented in figure 3.2.7. The

assembled trees are shown in figures 3.2.8 and 3.2.9.

Figure 3.2.7: Densely packed building volumes

Figure 3.2.8: The printed and assembled Pyramid-tree
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Figure 3.2.9: The printed and assembled Spherical tree

Additionally, one of the seven large branches of the Spherical tree is used for

PIV measurements in order to obtain more detailed information about its

wake. It then can be determined if and how strong interactions between

the larger branches’ occur. This branch consists, like the original tree, of

all branch diameters. Its height is 21.2 cm whilst being 17.1 cm wide and

15.5 cm in depth. The former first generation branch here is the trunk. They

both have the same diameter of 2 cm. The 3D-CAD model and the branch

mounted in the wind-tunnel can be seen in figure 3.2.10. In the background

the turbulence sieves and the fan-array are visible.

Conducting a Direct Numerical Simulation (DNS) of a whole tree with a rea-

sonable resolution, even for the smallest branches, exceeds the limits of cur-

rent computational power. For this reason measurements and simulations

for very small parts of the trees are executed. Given their fractal character,

these parts are smaller versions, obviously with less branches, of the trees

themselves. Investigations are conducted for the Pyramid- and Spherical tree.

As shown in figure 3.2.11a, the small Pyramid-tree consists of branches from

the second, third, fourth and fifth generation. It has a total height of 8.7 cm

and a maximum width and depth of 10.1 cm. In the same figure on the right,

3.2.11b the small Spherical tree is shown, which consists of second, third and

fourth generation branches with a total height of 6.9 cm, width of 5.7 cm and

depth of 6.2 cm.



40 Fractal Trees

(a) Branch created with SOLIDWORKS (b) Branch installed in the windtunnel

Figure 3.2.10: The small trees for more detailed studies

(a) Small branch of the Pyramid-tree (b) Small branch of the Spherical Tree

Figure 3.2.11: The small trees for more detailed studies



4 EXPERIMENTAL SETUP &

VALIDATION

This chapter is intended to illustrate the experimental setup. The wind-

tunnel and the PIV system are discussed, the MATLAB-toolkit PIVLAB, which

is used for analysis of the data, is presented and validation cases are docu-

mented.

4.1 Windtunnnel

The experiments are carried out in the Technische Akustik Prüfhalle on the cam-

pus of Technische Universität Berlin. The wind tunnel, built for conducting the

experiments with the fractal tree turbulence generators, is made from acrylic

glass with a thickness of 3 mm and wooden frames to stabilize the structure.

Figure 4.1.1 shows a model of the tunnel with pieces cut out of the fan-array,

honeycombs and two turbulence sieves for demonstration purposes. The

tunnel is designed with a removable top for easy installation of the different

trees into the test section.

The measuring section, starting after the second turbulence sieve, is rectan-

gular with a width of 0.474 m and height of 0.477 m (Atestsection = 0.23 m2). It

is 1.7 m long, while 1.5 m of it, in between the two wooden frames, has opti-

cal access for the PIV measurements. The trees are placed through a 20 mm

hole in the bottom, which is located 0.5 m downstream from the beginning of

the visible measuring section. The coordinate system has its point of origin

on the tunnel bottom in the center of the trunk.

The tunnel is placed in a rack built with aluminum-beams, which also con-

tain laser-unit and camera. The setup is shown below in figure 4.1.2.

41
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Figure 4.1.1: Model of the windtunnel

Figure 4.1.2: The experimental setup
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4.1.1 Blockage

The area blockage ratio φ is determined by calculating the projected area of

the model in direction of u∞ divided by the cross-sectional area of the tunnel.

φ should, as proposed in [30], not exceed 10%. In [14] a value for φ < 20% is

suggested.

φ =
Aprojected

Atestsection
(4.1.1)

Table 4.1 provides the results, the data for θ = 0◦ applies for orientations like

presented in figures 3.2.1b, 3.2.2b and 3.2.3b. Rotations are realized around

the trunks’ center axis. For simplicity, the ratios were only determined for

angles which coincide with symmetry planes. The numbers exceed 10%.

However, the trees’ blockage is not focused to a distinct part of the cross

sectional area, it is distributed over most of it. This leads to the assumption

that exceeding the threshold of 10% is justified. Local accelerations around

the fine branches do not lead to the obstacle acting as a nozzle, like it would

be the case for a solid body, e.g. a car-like model.

H-tree Pyramid-tree Spherical tree
θH φH θpy φpy θsph φsph

0◦ 9.88 % 0◦ 10.45 % 0◦ 18.69 %
90◦ 7.89 % 45◦ 13.03 % 30◦ 21.08 %

Table 4.1: Blocking ratio φ for each tree at different angles θ



44 Experimental Setup & Validation

4.2 PIV System

Particle Image Velocimetry (PIV) is a non-intrusive, image-based method for

measuring velocity fields. The principle is presented in figure 4.2.1, which

has been adapted from [28].

Figure 4.2.1: The principle of PIV, adapted from [28]

The flow is seeded with tracer particles. A laser with light sheet optics il-

luminates a plane twice in a short time. The laser-pulses are synchronized

with the camera, which takes one picture of the illuminated particles for each

pulse with a known time increment ∆t. The two images are then divided

into smaller interrogation areas, of which the correspondent areas are cross-

correlated, which, if done properly, yield the direction and distance of the

displacement, ∆x. The relation

u =
∆x

∆t
(4.2.1)

holds for sufficiently small values of ∆t, because movement with local flow

speed in local flow direction can with a fair degree of certainty assumed to
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be linear. Hence, one velocity vector per pair of interrogation window can

be derived. Details about the flow-following abilities of the seeding parti-

cles, their light-scattering properties, statistical methods, as well as multi-

pass techniques and several filtering approaches can be found in [23] and

especially in [28]. The inherent accuracy limit, which is of order 0.1 px, is

described in [24].

In the experiments for this work, seeding is generated from DEHS-oil with an

atomizing nozzle, which produces oil droplets of around 1 µm in diameter.

The images are recorded with an ILA pco.2000 cooled 14-bit CCD-Camera

with a maximum resolution of 2048 x 2048 pixels while operating at 15 Hz.

The exposure time for each image was set to 20 ms. For illumination, a Quan-

tel EverGreen 145 double-pulse Nd:YAG-Laser with a wavelength of 523 nm

and a maximum power of 145 mJ per pulse is used.

A pulse distance of 293 µs was chosen for the double images, such that the

displacement of tracer particles in a flow of 3 m/s is around 8 px.

Some examples of recorded images and the resulting vectors, including valid

and invalid ones, can be found in the appendix.
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4.3 Analysis Software PIVLAB

For derivation of the velocity field, which is the basis for all further analyses,

PIVLAB - TIME-RESOLVED DIGITAL PARTICLE IMAGE VELOCIMETRY TOOL

FOR MATLAB is used, an open-source GUI based tool. It was first published

in March 2009 and has been updated and improved ever since. The analy-

ses made for the present work were done using version 1.41 [32]. It contains

features such as masks, the option to define a range of interest (ROI) and

different pre-processing image enhancement options, e.g. high-pass filter-

ing or intensity capping for overly bright pixels. Furthermore, it offers up

to four analysis-passes with different sized interrogation areas for each pass,

as well as different sub-pixel estimators. Vector-validation can be achieved

with median or standard-deviation filters and as well by validation based

on a u-v-scatter-plot. PIVLAB offers various means of extracting data from

the calculated velocity field, such as extraction of velocity profiles along ar-

bitrary lines, integration of variables in any area, as well as subtracting mean

flows, histograms, calculation of the vorticity, streamlines or shear and strain

rates. The obtained datasets can be exported in different formats, such as mat

or vtk, of which the later is used for further analysis in PARAVIEW.

Detailed descriptions and documentation about PIVLAB can be found in [31]

and [33], while images of the settings used in the present work can be found

in the appendix.
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4.4 Validation Cases

In order to validate the recorded data and analysis routine, measurements of

both the empty canal with and without flow are conducted at two different

positions. Hence velocities around 0 m/s and u∞, within the whole system’s

accuracy, are measured. The results then are used to assess the accuracy of

measurement and to derive information about the undisturbed velocity field

and its initial fluctuations.

According to the coordinate system introduced in figure 4.1.1, the corre-

sponding velocity components ux, uy and uz can be decomposed into a sta-

tionary (mean) velocity u with instationary fluctuations u′ around the mean

value. Furthermore u is calculated by temporal averaging of measured ve-

locities for ∆t = const. Since the fluctuations describe variations around

a mean value, their temporal average is zero (equation 4.4.3). Hence, the

second-order statistical moment, the RMS value (root mean square, equation

4.4.4), is usually used to characterize fluctuations [11, 23, 26].

u(x, t) = u(x) + u′(x, t) (4.4.1)

u(x) =
1

n

n

∑
i=1

u(x, ti) (4.4.2)

u′(x, t) = 0 (4.4.3)
√

u
′2 =

√

1

n

n

∑
i=1

u′(x, ti)2 (4.4.4)

In addition the mean turbulent kinetic energy k can be calculated. In the case

of isotropic turbulence, the statistical properties of the velocity are invariant

with respect to translation and rotation, which simplifies the calculations and

offers an estimate for k with only 2D-data, although fluctuations, and there-

fore k, are always three-dimensional. The last component u
′2
z is, because of

assuming isotropic turbulence (equation 4.4.6), replaced by the sum of each

1/2 of the two other components [11, 13, 26].
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k =
1

2
(u′2

x + u
′2
y + u

′2
z ) (4.4.5)

u
′2
z =

1

2
(u′2

x + u
′2
y ) (4.4.6)

k2D =
3

4
(u′2

x + u
′2
y ) (4.4.7)

The turbulence intensity, especially for the measured 2D data is calculated as

follows. Equation 4.4.9 will be used for calculations.

Tu3D =

√

1
3 (u

′2
x + u

′2
y + u

′2
z )

u
=

√

2
3 k

u
(4.4.8)

Tu2D =

√

2
3 k2D

u
=

√

1
2 (u

′2
x + u

′2
y )

u
(4.4.9)

The configuration of the PIV-system and measured validation planes is pre-

sented in figure 4.4.1. The plane closer to the tree, validation plane 1, is a

square with an edge length of 23.3 cm, which is centered at (23 cm, 11.5 cm,

11.5 cm). Validation plane 2 has dimensions of 23.3 cm x 20.5 cm with its cen-

ter located at (48.7 cm, −12 cm, 6.5 cm).

Figure 4.4.1: Orientation of the planes for the validation case
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The analysis is performed applying three passes, each with 50% overlap. The

first one uses window sizes of 64 x 64 pixels, the second operates with 32 x 32

and the third pass then works with the final interrogation area of 16 x 16. Fur-

thermore, a Gauss 2 x 3 point sub-pixel estimator is applied.

The FFT window deformation algorithm with a spline window deformation inter-

polator is chosen. For each pass, the corresponding displaced and deformed

interrogation window, obtained from the previous pass, is used for corre-

lation. This reduces effects, such as peak-locking, since with the deformed

windows are displaced in direction of the local velocity obtained from the

previous pass. That reduces the amount of particles having left the interro-

gation windows within ∆t.

In the following analyses, poorly illuminated and reflecting areas, from the

aluminum frame under the wind tunnel, are clipped. Histogram equaliza-

tion (CLAHE), high-pass filtering in order to remove structures in the back-

ground of the images, as well as intensity capping are applied. Furthermore,

the resulting vectors are filtered by standard deviation (default settings) and

by discarding erroneous vectors using the scatter-plot. For instance, vectors

represented by dots outside the dense cluster in figure 4.4.2d are discarded

and replaced by interpolated vectors.

Different interrogation window sizes have been tested. In order to achieve

the highest resolution, the windows are chosen to be as small as possible.

Scatter-plots of the measured velocities in validation plane 2 are presented

in figure 4.4.2 for interrogation window sizes of 8,16 and 32 px for configu-

rations without flow on the left and with flow on the right. It is visible that

for 8 px the amount of erroneous results increases in comparison to larger

sizes. On the other hand further increasing the windows to 32 px yields re-

duces the spatial resolution even more but there seems to be no benefit in

terms of the accuracy of the results. This is deduced from the fact, that the

scatter-plots for both configurations appear to be very similar for both 16

and 32 px. Therefore 16 px windows are used for all further analyses. For

an image edge length of 23.3 cm at 2048 pixels, the analysis yields 255 vec-

tors. Hence, a 255 x 255 vector field with each vector describing an area of

0.91 mm x 0.91 mm is obtained. For plane 1 300 samples are recorded, for
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plane 2 only 75. The therefore better convergence of the turbulence statistics

in plane 1 can be seen in figures 4.4.5 and 4.4.8.

(a) Window size 8 px, without flow (b) Window size 8 px, with flow

(c) Window size 16 px, without flow (d) Window size 16 px, with flow

(e) Window size 32 px, without flow (f) Window size 32 px, with flow

Figure 4.4.2: Velocity scatter-plots, empty wind-tunnel, with and without flow, dif-
ferent interrogation windows
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The velocity magnitude in validation plane 2 for the empty wind tunnel

without flow can be seen in figure 4.4.4. Note the increased noise for the

8 px window in 4.4.4a. The vertical drift in the results, between 0 m/s and

about 0.025 m/s seems to be independent of the window size. For validation

plane 1 values within the limits ±0.02 m/s were found. The experimental

setup is able to measure a velocity of zero within limits of ±0.05 m/s.

The velocity magnitude for validation plane 1, calculated with a window

size of 16 px, is presented in 4.4.3. It is worth noting that the velocity mag-

nitude only in small areas exceeds 0.15 m/s, which indicates an even better

accuracy than achieved in validation plane 2. Furthermore, it should also be

noted that structures, like parts of the aluminum (see 4.1.2), from the image

background are visible. As mentioned above, poorly illuminated or reflect-

ing parts of the images are clipped. Here this is not done for demonstration

purposes. Clearly, the measurements are distorted. The results obtained still

seem to be reasonable and therefore is would be misleading to include them

into the analysis. Still, the non-distorted area indicates values being closer to

a velocity of 0 m/s than the values obtained from validation plane 2.

Figure 4.4.3: Velocity in the empty channel, no flow, 16 px, validation plane 1
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(a) Interrogation window size 8 px,
without flow

(b) Interrogation window size 16 px,
with flow

(c) Interrogation window size 32 px,
without flow

Figure 4.4.4: Velocity in the empty channel, no flow, different interrogation win-
dows, validation plane 2
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The same procedure is repeated with the tunnel running. For the velocity

magnitudes, see figure 4.4.5. The histograms for both validation planes can

be found in figures 4.4.6 and 4.4.6. The average rounded to the first decimal

yields u = 2.8 m/s, which will be used for further calculations.

(a) Validation plane 1 (b) Validation plane 2

Figure 4.4.5: Velocity magnitudes for the empty channel with flow, 16 px

Figure 4.4.6: Histogram for the empty channel with flow, 16 px, validation plane 1
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Figure 4.4.7: Histogram for the empty channel with flow, 16 px, validation plane 2

The turbulence intensities can now be calculated via 4.4.9. The results can be

found in figure 4.4.8. It can be seen that the turbulence intensity for the vali-

dation planes, and hence estimated for the whole windtunnel, is on average

at 2.5%.

(a) Validation plane 1 (b) Validation plane 2

Figure 4.4.8: Turbulence intensities for the empty channel with flow, 16 px



5 EXPERIMENTAL RESULTS

In the following chapter results from the PIV-measurements are presented

and discussed. Overviews as well as detailed plots of the measured planes

for the Pyramid-tree, large branch of the spherical tree and small parts of both

trees are presented and discussed. The coordinate origin is, as defined in fig-

ure 4.1.1, in the middle of the trunk on the tunnel bottom.

5.1 Pyramid-tree

For the pyramid tree, see table 3.2 for its dimensions, measurements were

carried out at two different x-y-positions. These are located at the same x-y-

position as the validation planes but have varying heights z. For the position

further downstream 32 planes are recorded, from 6 − 16 cm with an incre-

ment of 2 cm, from 16 − 40 cm with 1 cm increments and from 40 − 44 cm

again with a 2 cm distance. For the position closer to the trees 29 heights are

measured, the lowest plane at 12 cm, while the following planes and corre-

sponding increments stay the same. For purposes of presentation the plane

closer to the tree is mirrored that both planes can be shown on the same side.

In order to ensure convergence of the averaged quantities, such as velocity

magnitude or turbulence intensity, 300 vector fields are calculated for each

plane and height.

An overview of the mean velocity fields is given in figure 5.1.1. The imprint

is visible in the planes further downstream in figures 5.1.1 and 5.1.2. The ve-

locity magnitude defect behind the tree leads to velocities slower than 1 m/s,

while outside of the tree, mostly in the corners of the tunnel, an acceleration

of the flow up to 3.2 m/s is observed (see section 4.1.1). Figures 5.1.3 - 5.1.6

show instantaneous velocity fields at z = 14, 24, 29 and 34 cm. The dark gray

parts are at the same corresponding height as the recorded data, while the

transparent parts are displayed for orientation and clarity.

55
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Figure 5.1.1: Overview of the PIV measurements for the Pyramid-tree, each plane
shows the average velocity magnitude

Figure 5.1.2: Detailed view in flow direction, tree opacity 30%
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Figure 5.1.3: Instantaneous velocity field at z = 14 cm
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Figure 5.1.4: Instantaneous velocity field at z = 24 cm
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Figure 5.1.5: Instantaneous velocity field at z = 29 cm



60 Experimental Results

Figure 5.1.6: Instantaneous velocity field at z = 34 cm
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The turbulence intensity, again in an overview, is plotted in figure 5.1.7. It

reaches its maximum of around 17 % in the wake of small branches in the

tree’s lower part which only have the trunk upstream of them. Figure 5.1.8

shows the results from another direction. It is obvious that Tu exceeds 10 %

only in distinct areas close behind the tree and further downstream in the

middle of the lower part of the tree where fewer branches are located and

the wake behind the trunk dominates, it seems that the branches reduce Tu.

This matches the findings from Cafiero et al. [3] verys well, who suggest that

the largest part of modal energy is associated with vortex shedding at the

largest structures. The turbulence decay seems to happen faster for turbu-

lence generated by small branches than from the comparatively wide trunk

and the few small branches. Furthermore, it is worth noticing that in 5.1.8

it can be seen that the ongoing decay lowered Tu down to values of around

7 % only 50 cm downstream of the tree. Additionally, Tu is interpolated from

planar data onto a volumetric dataset of the resolution 255 x 255 x 190 grid

points, which is used to create contour plots, which can be seen in figure

5.1.9 for Tu = 7.5, 10, 12.5 and 15 %.

Figure 5.1.7: Overview of the measured turbulence intensity for the Pyramid-tree
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Figure 5.1.8: Turbulence intensity behind the Pyramid-tree

Figure 5.1.9: Contours of Tu = 7.5, 10, 12.5, 15 % from the interpolated data
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Figures 5.1.10 and show 5.1.11 the contour plots again, now with an empha-

sis on the areas of higher turbulence behind individual branches, which can

be easily spotted. Note also the high value of Tu behind the trunk.

Figure 5.1.10: Areas of higher Tu behind distinct (clusters of) branches, Tu = 7.5,
10, 12.5, 15 %

Figure 5.1.11: Top view on the contour-plot, Tu = 7.5, 10, 12.5, 15 %
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5.2 Large Branch of the spherical tree

For the branch of the spherical tree, as presented in figure 3.2.10, 600 double-

images are taken and analyzed in order to further improve convergence of

the averaged quantities. Again, overview representations for the velocity

magnitude and Tu are presented. The velocity magnitude is displayed in

figure 5.2.1, Tu in figure 5.2.2. For each x-y-position 11 planes are measured.

Both areas have dimensions of 7.9 cm x 7.9 cm, while each of the 255 x 255 cal-

culated vectors now describes an area of 0.31 mm x 0.31 mm. This holds for

all further PIV-analyses in this work. The centers of the planes are located at

(11.7 cm, 3.5 cm, z) and (21.2 cm, 3.5 cm, z). The bottom plane is located at a

height of z = 9.3 cm, which is the lowest point of the small branches. From

there all further planes are measured with an increment of 1 cm each. There-

fore the top plane is at z = 19.3 cm. Even though not visible in the presented

overview image, the imprint, as mentioned in [18], is clearly visible in form

of the velocity defect in the wake.

Figure 5.2.1: Overview of the average velocity for the large spherical branch
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Figure 5.2.2: Overview of the turbulence intensity for the large spherical branch

For a more detailed study of the development of Tu three planes at heights

z = 10.3 cm, 13.3 cm and 16.3 cm are selected, which are displayed in figures

5.2.3 and 5.2.4. Note that the lowest number for Tu here is 5 %.

Figure 5.2.3: Locations of the selected planes
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(a) Top view on planes at z = 10.3 cm

(b) Top view on planes at z = 13.3 cm

(c) Top view on planes at z = 16.3 cm

Figure 5.2.4: The selected planes for a more detailed study of Tu
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From the overview image 5.2.2 it is obvious that Tu exceeds 10 % only very

closely behind the branches and then rapidly decreases. This observation

very well matches the conclusions from the Pyramid-tree, which shows simi-

lar behavior.

Figure 5.2.4a shows that the highest Tu is up to 25 % at 8 cm behind the trunk.

Furthermore, at 20 cm values of 15 % can still be found. Further downstream

at 25 cm from the trunk, at the second plane’s downstream-end, the wakes

of small branches have merged with the trunk’s larger wake and hence Tu

exceeds 10 % over almost the whole width of the tree. From 13 % in the mid-

dle of the tree Tu decreases down to about 10 % at 6 cm in y-direction. The

near wake of the smaller branches, visible in the top half of the first plane,

reaches values of Tu of up to 18 %, which then decreases very fast to values

of Tu < 10 % only ca. 5 cm further downstream.

A more drastic and even faster decreasing distribution of Tu is observed in

the planes 3 cm higher at z = 13.3 cm, presented in figure 5.2.4b. Here, the

plane closer to the tree only has values of 8.5 % < Tu < 10 %. Further down-

stream, in the second plane, besides the wake close to the top corner and the

one just below the middle of the picture, most of the turbulence ceases to

exceed even a value of 8.5 %.

For the planes another 3 cm higher, then at z = 16.3 cm, the near wake just

behind the cluster of small branches (compare figure 5.2.4) Tu again reaches

up to 19 %, which then decreases swiftly until an estimated value of 10 % in

between the measured planes and values of around 5 % at the downstream

end of the measured plane. Again, merging of the large central wake and the

smaller one from further outside is visible.

Figures 5.2.5 and 5.2.5 show contour plots of Tu from the volumetric dataset

obtained from interpolation between the measured planes. They suggest that

the top part of the turbulence generator only has a significant impact in the

near wake. The lower part, especially the trunk, generates the most turbu-

lence, while the large number of small structures seems to reduce Tu.
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Figure 5.2.5: Contourplot of Tu from interpolated dataset, Tu = 5, 10, 15, 20, 25 %

Figure 5.2.6: Visualization of high Tu behind the trunk and close to the tree
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5.3 Small Branch of the spherical tree

The smallest printed part of the spherical tree, displayed in figure 3.2.11b, is

again analyzed using 600 double-images for good convergence of the statis-

tics. Like for the large branch, the analyzed planes are 7.9 cm x 7.9 cm, large

with their center being located at (6.8 cm, −0.5 cm, z). 11 planes are mea-

sured at heights of z = 1.5 cm, 2.5 cm and from there in 5 mm increments up

to a maximum height of 7 cm. Overview images of both velocity magnitude

and Tu can be seen in figures 5.3.1 and 5.3.2.

Figure 5.3.1: Overview of the average velocity for the small spherical tree

Figure 5.3.2: Overview of the turbulence intensity for the small spherical tree
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In order to get a more detailed idea about the turbulence intensity the inter-

polated data is used again. It is presented from three different points of view

in figure 5.3.3. It becomes clear that Tu decays over a short distance.

Figure 5.3.3: Three representations of the isosurfaces for Tu = 5, 10, 15, 20 % for the
small spherical tree

At lower heights, with the trunk as the only obstacle, the initial turbulence is

the highest (compare also figure 5.3.2) and decays to values lower than 15 %

at x = 100 mm and even below 10 % for the upper part.

In the middle part, Tu already drops under 15 % at x = 50 mm. In contrast

to the trunk and more central parts of the tree, in the top part only small
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branches of the third and fourth generation generate turbulence. Decay there

happens is even faster, Tu falls below 10 % at already x = 60 mm. Note that

the turbulence is generated by structures being closer to the measured areas

than it is the case for lower parts of the tree.

It is a striking, yet not desired, observation that behind the very center of the

tree (at z = 35 cm, where the trunk ends and the next generation emerges)

very fast falls below 10 %. This particular behavior is shown in figure 5.3.4.

A possible reason for this might be that upstream of the region with low Tu

there is a branch of the second generation in direction of the flow (compare

figure 5.3.3, bottom left image). However, the maximum values for Tu are

located behind the trunk and, with faster decay, right after the small clusters

of branches.

Figure 5.3.4: View of Tu (note the low values numbers in the very middle) behind
the trunk’s tip
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For comparison to the numerical data, the vorticity is calculated and plotted

in figure 5.3.5. Note that from the measured data in the x-y-plane only the

z-component can be obtained.

Figure 5.3.5: Z-component of the time-averaged vorticity for the small spherical tree
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5.4 Small Branch of the Pyramid-tree

The smallest part of the Pyramid-tree is shown in figure 3.2.11a. Measure-

ments forthis part are again done by recording 600 double-images. Like for

the previous analyses, the planes have dimensions of 7.9 cm x 7.9 cm large

with centers at (9.1 cm, 3.1 cm, z). 16 planes are measured, the lowest being

at z = 1 cm. From there the other planes are measured in 5 mm increments

up to a maximum height of 8.5 cm. The velocity magnitude and Tu are pre-

sented in figures 5.4.1 and 5.4.2.

Similar to previous observations, the largest values for Tu of more than 20 %

are found in the wake of the trunk. Even only a little higher, where small

branches in addition to the trunk generate turbulence, Tu does not exceed

15 % anymore.

Figure 5.4.1: Overview of the average velocity for the small Pyramid-tree
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Figure 5.4.2: Overview of the turbulence intensity for the small Pyramid-tree

In figure 5.4.3 the same pattern as found for the small spherical tree is ob-

served again. The highest Tu is found in the wake of the trunk with values

of around 20 % at x = 50 mm, where the measurement area starts, and 15 %

until x = 100 mm.

Right in the middle of the tree, where the new branches emerge from the

trunk, again low Tu is found, as well as in the downstream wakes of mid-

dle of the outer and upper cluster of branches (see figure 5.4.3 on the bottom

left). Again, the treetop seems to be far less effective in generating turbulence

than the middle and lower part. Tu is lower than 10 %.



Experimental Results 75

Figure 5.4.3: Three representations of the iso-surfaces for Tu = 5, 10, 15m 20 % for
t he small Pyramid-tree
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Like for the small spherical tree, for comparison to the numerical data, the

vorticity is derived and plotted in figure 5.4.4. Again, to the 2D-data only

allows the z-component to be calculated, which in the present case was done

by calculating the curl of the averaged velocity.

Figure 5.4.4: Z-component of the time-averaged vorticity for the small Pyramid-tree
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5.5 Young Spruce Tree

In order to compare the designed trees additional measurements are con-

ducted with a small spruce tree, figure 5.5.1. Its trunk is about 1 cm in diam-

eter, the canopy is ca. 25 cm wide and deep, the total height is 40 cm. Since

it is mounted below the tunnel, its effective height is only 35 cm. At posi-

tions (21.3 cm, -3.3 cm, z) and (30.9 cm, -3.3 cm, z) 7 planes (z = 13 − 25 cm,

2 cm increments) are measured. In contrast to the 3D-printed rigid trees the

spruce begins to bend and oscillate with small amplitudes of around 2 cm at

the top in the airflow.

Figure 5.5.1: The spruce tree for correlations with the printed models

Representations of the velocity magnitude and Tu can be found in figures

5.5.2 and 5.5.3. The Pyramid-tree (see sec. 5.1) has about the same height

(44 cm), but is 20 cm wider (44 cm). The smallest velocity magnitude for both

is at 0.5-0.6 m/s. It is worth noting that the overall velocity defect and Tu

match well. For the Pyramid-tree the maximum Tu is 18 %, while being 15 %

for the spruce. At ca. x = 35 cm Tu falls below 10 % for both cases almost
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in every plane. The spruce’s imprint is not clearly visible because it does

not have a distinct, strictly defined pattern of branches. The significant dif-

ferences between the measured planes in figure 5.5.3 could indicate that the

number of samples (600) is too low.

Figure 5.5.2: Overview of the average velocity magnitude for the spruce

Figure 5.5.3: Overview of the turbulence intensity for the spruce
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5.6 Parts of a yew tree

The printed trees are perfectly rigid for a wind speed of 2.8 m/s, while the

spruce was only lightly affected, as previously stated. Therefore, in order to

further investigate the influence of flexibility, small yew parts are used (fig-

ure 5.6.1). All experiments with the yews were conducted shortly after cut-

ting, therefore the assumption of constant mechanical properties compared

to the living yew seems reasonable. The two Y-shaped branches are each

about 13 cm high and ca. 7 cm wide at the very top. With the tunnel running,

the airflow bends them by 30◦ as it can be seen in figure 5.6.2. Addition-

ally, two of the branches are placed into the wind-tunnel with a distance of

7 cm in flow direction in order to obtain information about the interaction

of their wakes. They are presented in figure 5.6.3. The experimental data

was obtained from two planes with the same dimensions as used previously

(7.9 cm x 7.9 cm) with centers at (9 cm, 3 cm, z) and (19 cm, 3 cm, z), while this

time only two heights are measured, z = 5 and 8.5 cm. For the two branches

one after another, only the second, further downstream, plane at z = 8.5 cm

is measured.

Figure 5.6.1: The yew branch without (left) and with (right) flow, view from the top
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Figure 5.6.2: The yew branch bent by 30◦, flow from the left

Figure 5.6.3: The two yew branches, views from the side and top
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Figures 5.6.4 and 5.6.5 show the measured planes, as well with an approxi-

mate location of the branch, of both velocity magnitude and Tu. The range

of velocity is 5.5 e−3 - 3.17 m/s, while for Tu it spans from 2.68 % to 29.4 %.

In contrast to previously discussed data the mean velocity average is at about

zero in the wake at z = 8.5 cm, while just outside the wakes it almost hits

3.2 m/s. The shear layer is clearly visible, here Tu attains its maximum. Tu

is reaches values of >25 % in the shear-layers right behind the branches, the

most significant plane, again the one at z = 8.5 cm, is displayed in figure

5.6.6. Figure 5.6.7 shows the downstream decay at the same height with an

adjusted legend for clarification and further comparison.

Figure 5.6.4: Overview of the average velocity magnitude for the single yew branch
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Figure 5.6.5: Overview of the turbulence intensity for the single yew branch

Figure 5.6.6: Turbulence intensity for the single yew branch at z = 8.5 cm
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Figure 5.6.7: Turbulence intensity for the single yew branch at z = 8.5 cm, further
downstream

The results for the two yew branches with 7 cm stream-wise distance are

shown in figures 5.6.8 - 5.6.11. The velocity span is 0.44 - 2.98 m/s, while

for Tu it is between 2.72 and 19.9 %. Comparison of figures 5.6.7 and 5.6.11,

which are measured at the same height and distance behind the (last) branch,

show Tu of >10 % for the two branches almost everywhere in the wake, while

for only one branch, it mostly drops under 10 %. Hence, the two branches in

line significantly increase Tu in the wake and slow down the decay.
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Figure 5.6.8: Overview of the average velocity magnitude for the two branches

Figure 5.6.9: Overview of the turbulence intensity for the two branches
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Figure 5.6.10: Velocity magnitude for the two branches

Figure 5.6.11: Turbulence Intensity for the two branches
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6 NUMERICAL SIMULATIONS

This chapter is intended to discuss the numerical simulations and compare

and correlate them to the experimental data. All simulations are conducted

using FLUSI, the fluid-structure-interaction solver which has been devel-

oped by Thomas Engels to . It is designed to run on massively parallel su-

percomputers and makes use of the volume penalization method with an

effective Fourier-discretization for the fluid. More detailed information can

be found in [8]. Simulations are conducted for the smallest printed parts of

both the spherical and Pyramid-tree (figure 3.2.11). Their experimental study

is discussed in the previous chapter in sections 5.3 and 5.4.

Slices at the same heights as used in the experiments are extracted from the

numerical results for the purpose of direct comparison. Each slice covers an

area of 15.6 cm x 7.8 cm with a resolution of 2048 x 1024 pixels. Hence, each

data point in the extracted sheets represents an area of 0.076 mm x 0.076 mm.

As mentioned in section 5.2, the PIV-sheets with a 255 x 255 pixels resolu-

tion cover an area of 0.31 mm x 0.31 mm each. The numerical data offers a

16 times better resolution compared to the respective PIV data (4.09 times in

each direction, hence actually the resolution is 16.63 times higher). At the

same time, the covered area of the is almost twice as large (1.949 times) as

the area covered by PIV-data.
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6.1 Spherical Tree - Simulation & Experiment

Planes are extracted at z = 25, 40, 45, 50 and 55 cm, as it can be seen in figures

6.1.1 and 6.1.2,

Figure 6.1.1: Location of the compared planes, side view

Figure 6.1.2: Location of the compared planes, isometric view
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First, the influence of the missing z-component for the comparison with the

experimental data is investigated. For this purpose. the mean velocity (fig-

ure 6.1.3) is calculated from the x- and y-components of the velocity (left) and

also in all three dimensions (right). No visible difference between the two-

and three-dimensional calculations is found. This justifies comparison of the

2D-PIV data to the 3D numerical data in the following analysis. The periodic

boundary conditions of the simulation are visible. In the center the inflow

velocity is found to be at around 2.3 m/s, while further along the y-axis it

increases up to 3 m/s, which has to be kept in mind for comparison.

Figure 6.1.3: Comparison between the 2D- and 3D average velocity magnitude,
z = 25 cm
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Figures 6.1.4 - 6.1.23 show comparisons of instantaneous and mean velocity

fields, Tu, as well as the vorticity for each of the five selected planes. Even

though Tu is calculated from 2D-velocity-vectors for the experimental data

and by using the 3D-data from the simulations, the agreement is remark-

able. Experimental results are superimposed with the numerical results on

the left side, while only numerical data is shown on the right side. Note that

for the vorticity, only the z-component can be obtained from a velocity vector

in the x-y-plane. Note the noise in the instantaneous velocity fields, which is

not visible in the averaged fields anymore. The overall agreement between

experimental and numerical data is excellent, even though the significantly

lower resolution of the PIV-data is visible.

For the vorticity, the same comparisons are made, while the scale of the nu-

merical data is set to span the range covered by the experimental results. For

the comparison between the z-component and the vorticity magnitude, the

ranges of the colormaps are also adjusted for better visibility of the results.

Extremely high maximun and minimum values of both the z-component

(around ±1.5 · 104 1/s) and the magnitude (around 2.5 · 104 1/s) very close

and directly at the branches would otherwise make visual comparison im-

possible.
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Figure 6.1.4: Comparison of two instantaneous velocity fields, z = 25 mm
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Figure 6.1.5: Comparison of the average velocity, z = 25 mm
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Figure 6.1.6: Comparison of Tu, z = 25 mm
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Figure 6.1.7: Comparison of the average vorticity (z-component), z = 25 mm
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Figure 6.1.8: Comparison of two instantaneous velocity fields, z = 40 mm
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Figure 6.1.9: Comparison of the average velocity, z = 40 mm
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Figure 6.1.10: Comparison of Tu, z = 40 mm
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Figure 6.1.11: Comparison of the average vorticity (z-component), z = 40 mm
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Figure 6.1.12: Comparison of two instantaneous velocity fields, z = 45 mm
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Figure 6.1.13: Comparison of the average velocity, z = 45 mm
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Figure 6.1.14: Comparison of Tu, z = 45 mm
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Figure 6.1.15: Comparison of the average vorticity (z-component), z = 45 mm
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Figure 6.1.16: Comparison of two instantaneous velocity fields, z = 50 mm
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Figure 6.1.17: Comparison of the average velocity, z = 50 mm
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Figure 6.1.18: Comparison of Tu, z = 50 mm
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Figure 6.1.19: Comparison of the average vorticity (z-component), z = 50 mm



Numerical Simulations 107

Figure 6.1.20: Comparison of two instantaneous velocity fields, z = 55 mm
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Figure 6.1.21: Comparison of the average velocity, z = 55 mm
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Figure 6.1.22: Comparison of Tu, z = 55 mm
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Figure 6.1.23: Comparison of the average vorticity (z-component), z = 55 mm
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6.2 Pyramid-tree - Simulation & Experiment

Planes are extracted at z = 10, 25, 35, 50, 65 and 75 cm. The location planes is

presented in figures 6.2.1 and 6.2.2.

Figure 6.2.1: Location of the compared planes, side view

Figure 6.2.2: Location of the compared planes, isometric view
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Figures 6.2.3 - 6.2.26 display comparisons of instantaneous and mean veloc-

ity fields, Tu and vorticity for the six selected planes. Tu is calculated from

the 2D velocity vectors for the experimental planes, while 3D-data from the

simulation is used for calculations. Again, only the z-component of the vor-

ticity can be obtained from velocity vectors in the x-y-plane. The simulation

show wider wakes as visible in 6.2.4 or 6.2.20. Further downstream, the dis-

crepancy between simulation and experiment closer to the tree diminishes.

The maximum values of the vorticity z-component are ±5.38 · 103 1/s and

for the magnitude the maximum is 7.5 · 105 1/s.
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Figure 6.2.3: Comparison of two instantaneous velocity fields, z = 10 mm
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Figure 6.2.4: Comparison of the average velocity, z = 10 mm
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Figure 6.2.5: Comparison of Tu, z = 10 mm
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Figure 6.2.6: Comparison of the average vorticity (z-component), z = 10 mm
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Figure 6.2.7: Comparison of two instantaneous velocity fields, z = 25 mm
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Figure 6.2.8: Comparison of the average velocity, z = 25 mm
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Figure 6.2.9: Comparison of Tu, z = 25 mm



120 Numerical Simulations

Figure 6.2.10: Comparison of the average vorticity (z-component), z = 25 mm
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Figure 6.2.11: Comparison of two instantaneous velocity fields, z = 35 mm
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Figure 6.2.12: Comparison of the average velocity, z = 35 mm
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Figure 6.2.13: Comparison of Tu, z = 35 mm
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Figure 6.2.14: Comparison of the average vorticity (z-component), z = 35 mm
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Figure 6.2.15: Comparison of two instantaneous velocity fields, z = 50 mm
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Figure 6.2.16: Comparison of the average velocity, z = 50 mm
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Figure 6.2.17: Comparison of Tu, z = 50 mm
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Figure 6.2.18: Comparison of the average vorticity (z-component), z = 50 mm
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Figure 6.2.19: Comparison of two instantaneous velocity fields, z = 65 mm
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Figure 6.2.20: Comparison of the average velocity, z = 65 mm
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Figure 6.2.21: Comparison of Tu, z = 65 mm
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Figure 6.2.22: Comparison of the average vorticity (z-component), z65 =mm
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Figure 6.2.23: Comparison of two instantaneous velocity fields, z = 75 mm
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Figure 6.2.24: Comparison of the average velocity, z = 75 mm
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Figure 6.2.25: Comparison of Tu, z = 75 mm
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Figure 6.2.26: Comparison of the average vorticity (z-component), z = 75 mm



7 CONCLUSION & OUTLOOK

The present thesis experimentally and numerically investigates turbulence

generators inspired by fractal trees. Different trees are designed, 3D-printed

in parts, assembled and used for PIV-investigations in a small wind-tunnel.

Furthermore, numerical simulations of the same trees are conducted and the

respective results are compared. Very good agreement between experiment

and simulation of instantaneous and averaged velocity fields, as well as tur-

bulence intensity is found.

For the vorticity it becomes clear that the spatial resolution of the PIV-system

is not high enough in order to capture the high vorticity in the near wake of

individual branches.

Real plant foliage, in particular a small spruce tree, as well as branches of a

yew tree, is experimentally investigated. The results for the spruce indicate

similar behavior compared to the printed parts. Larger differences are found

for the yews, which in the wind-tunnel bend up to 30◦. Two of them in line

significantly increase the turbulence intensity and slow down its decay.

A dominant observation for turbulence generated by fractal grids, according

to literature (see chapter 2), is the increase turbulence after the grid until a

certain distance and its decay from there. Since the structures investigated in

the present paper are three-dimensional there is no such point. A more so-

phisticated approach including the three-dimensionality would be desirable

in order to find systematic similarities between the different 3D-trees.

In future works, basing on the present work, in order to obtain more infor-

mation about the flow field, it would be desirable to measure time-resolved

drag forces of the tree, preferably with a load cell. Furthermore, stereo-PIV

could be employed in order to measure the z-component of the velocity. With

that information, vertical fluxes and structures could be investigated. Fur-

thermore, interpolation of volumetric data could be performed more reliably

and would not be limited to scalar fields, as it was the case in this work.

Time-resolved PIV or hot-wire anemometry could be used for time-resolved

measurements.
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138 Conclusion & Outlook

The H-tree was constructed but not used for the experiments in this work.

One inherent advantage of its appearance is that is does not have an upper

part with less branches generating turbulence. The hypothesis of a larger

wake and increased turbulence towards the centerline then could be exam-

ined and discussed.

The influence of the Reynolds-number onto turbulence generated by 3D-

fractal structures remains unclear at this point. Therefore repeating the mea-

surements for different wind speeds could give insights into the Reynolds-

dependence. In order to keep the efforts to be made within reasonable limits,

the measurement process, including the moving of the trees (or the laser-

camera unit) could be automated. For this purpose, LABVIEW in combina-

tion with a linear motor seems to be a good basis to start from.

For a more extensive study, an array of trees could be investigated. Further-

more, in an attempt to exploit the strong imprint of the fractal geometry in

the flow patterns, investigations concerning flow control mechanisms could

be made.
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chapter*Matlab Source Code

1 func t ion my_own_tree_example

2

3 c l e a r a l l

4 c l c

5 % This s c r i p t can generate 3D t r e e s with an a r b i t r a r y

number of branches per generat ion . Outputs the

coordinates of the s t a r t /end point and the length f o r

each c y l i n d e r to an a s c i i f i l e . This f i l e can be read

with FLUSI .

6

7 %% s e t t i n g s generat ions

8 % rho − v a r i a t i o n of the length between generat ions .

9 % rho < 1 : branches are g e t t i n g s h o r t e r

10 rho = 2^(−1/3) ;

11

12 % number of max generat ions , min , max

diameters

13 Jmax =9;

14 d_max = 0 . 0 8 ;

15 d_min = 0 . 0 0 6 ;

16

17 % length/diameter r a t i o

18 delta_gen = ( d_min/d_max ) ^(1/( Jmax−1) ) ;

19

20 %% s e t t i n g s trunk , not f r a c t a l yet

21 % length , usual ly unity

22 L0 = 1 ;

23 L_t = 1∗L0 ;

24 % trunk diameter

25 d0 = d_max ;

26 % p o s i t i o n of trunk (0 0 0 by convention )

27 x0 = [ 0 ; 0 ; 0 ] ;

28

29 %% s e t t i n g s angles

30 % angles f o r each branch , in r a d i a n t s

31 % length ( alpha ) determines number of branches per
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generat ion

32

33 alpha = [90 90]∗ pi /180;

34 beta = [0 180]∗ pi /180;

35 gamma = [90 90]∗ pi /180;

36

37 %% generat ion of t r e e

38 f i g u r e ( 1 ) ; c l f

39 % draw the trunk

40 l i n e ( [ x0 ( 1 ) , x0 ( 1 ) ] , [ x0 ( 2 ) , x0 ( 2 ) ] , [ x0 ( 3 ) , x0 ( 3 ) +L_t ] ) ;

41

42 f i d = fopen ( ’ t r e e _ d a t a . in ’ , ’w’ ) ;

43 f p r i n t f ( f id , ’%e %e %e %e %e %e %e\n ’ , x0 , x0 + [ 0 ; 0 ; L_t ] , d0

/2) ;

44

45 % the f i r s t generat ion i s not rotated , so i t s

t ransformat ion matrix i s a uni t matrix

46 M = eye ( 3 ) ;

47

48 % new base vec tor i s t i p of trunk

49 x_base = [ x0 ( 1 ) ; x0 ( 2 ) ; x0 ( 3 ) +L_t ] ;

50

51 % we s t a r t a t the f i r s t l e v e l ( zeroth i s the trunk )

52 j =1 ;

53

54 % r e c u r s i v e l y bui ld t r e e

55 draw_branch ( j , Jmax , rho , L0/2 ,d_max , delta_gen ,M, x_base , alpha

, beta , gamma, f i d ) ;

56

57 f c l o s e ( f i d ) ;

58 a x i s equal

59 view ( 4 5 , 2 6 )

60 grid on

61 end

62

63 func t ion draw_branch ( j , Jmax , rho , L , d , del ta , M1, x_base ,

alpha , beta , gamma, f i d )
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64 % r e c u r s i v e drawing of a f r a c t a l t r e e

65 % j − l e v e l counter ( used to abort when we‘ re done )

66 % rho − r a t i o of lengths ( between generat ions , <1 means

shr inking )

67 % L − length of my branches in t h i s generat ion

68 % M1 − t ransformat ion matrix used in the OLD generat ion .

used to r o t a t e r e l a t i v e to the previous branch

69 % x_base − base vec tor of my branches (= t i p of l a s t

generat ion )

70

71 f o r i = 1 : length ( alpha )

72 % M1 i s r o t a t i o n matrix from the preceeding generat ion

, to which we add , now, the RELATIVE r o t a t i o n :

73 M = Rx (gamma( i ) ) ∗Ry ( alpha ( i ) ) ∗Rz ( beta ( i ) ) ∗M1;

74

75 % in the r o t a t e d coordinate systen , the t i p i s a t

76 x _ t i p _ r e l = [ 0 ; 0 ; L ] ;

77

78 % applying the inver ted r o t a t i o n matrix f e t c h e s t h i s

vec tor in the system of the preceeding generat ion .

NOTE: applying inv (M) br ings us back to the

g loba l system

79 x _ t i p = x_base + transpose (M) ∗ x _ t i p _ r e l ;

80

81 % draw l i n e

82 l i n e ( [ x_base ( 1 ) , x _ t i p ( 1 ) ] , [ x_base ( 2 ) , x _ t i p ( 2 ) ] , [

x_base ( 3 ) , x _ t i p ( 3 ) ] ) ;

83

84 f p r i n t f ( f id , ’%e %e %e %e %e %e %e\n ’ , x_base , x_t ip , d

/2) ;

85

86 % recu rs ion

87 i f ( j <Jmax )

88 draw_branch ( j +1 , Jmax , rho , L∗rho , d∗del ta , del ta ,M,

x_t ip , alpha , beta , gamma, f i d )

89 end

90 end
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91 end

92

93 func t ion Rx=Rx ( angle )

94 % r o t a t i o n matrix around x a x i s

95 Rx=[1 0 0 ; 0 cos ( angle ) s i n ( angle ) ; 0 −s i n ( angle ) cos (

angle ) ] ;

96 end

97

98 func t ion Ry=Ry ( angle )

99 % r o t a t i o n matrix around y a x i s

100 Ry=[ cos ( angle ) 0 −s i n ( angle ) ; 0 1 0 ; +s i n ( angle ) 0 cos (

angle ) ] ;

101 end

102

103 func t ion Rz=Rz ( angle )

104 % r o t a t i o n matrix around z a x i s

105 Rz=[ cos ( angle ) +s i n ( angle ) 0;− s i n ( angle ) cos ( angle ) 0 ; 0 0

1 ] ;

106 end



SYNCHRONIZER & PIVLAB

Example of the synchronizer settings
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Example of some PIVLab settings



IMAGES & VECTORFIELDS

Example image 1
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Velocity vectors from example image 1 (and its corresponding second one)



149

Example image 2

Velocity vectors from example image 2 (and its corresponding second one)
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