Local deformation and stiffness distribution in fly wings

Henja-Niniane Wehmann, Lars Heepe, Stanislav N. Gorb, Thomas Engels, Fritz-Olaf Lehmann

06.12.2018 AIFIT Meeting | Paris

Flight of the house fly, *Musca domestica* L.

Mechanical properties are important

Nakata & Liu 2012, J. Comput. Physics 231, 1822-1847, Fig. 17

Rigid and flexible wings produce different forces.

Measuring the mechanical behaviour of fly wings

Measuring the mechanical behaviour of fly wings

Comparison of shape of deformed and undeformed wings.

Recording the force

Phases I, VI: Movement of the sensor Phase II: Sabilisation of force readings Phases III, V: Force measurement taken Phase IV: Profile measured optically

Recording the force

Leading edge Wing tip

Trailing Edge

Blow-fly *Calliphora vomitoria* L.: Linear behaviour for small deflections

Individual animals colour-coded. Stiffness 1.54 N/m $\leq k \leq$ 2.05 N/m

Calliphora: Behaviour like a cantilevered beam

Theoretical bending line → Stiffness along beam

Insect wings are complex mechanical structures

Is there spatial or dorsoventral anisotropy?

Different parts of the wing have different stiffness

Leading edge Wing tip Trailing Edge

No consistent dorsoventral anisotropy

- Found *Musca* wings to be significantly stiffer when loaded from the ventral side (corresponding to downstroke), but not the other species' wings
- Ma et al. (2017), Ning et al. (2017) found similar anisotropy for honeybees, Rajabi et al. (2015) explained potential sources for dorsoventral anisotropy for dragonflies
- Other studies found no dorsoventral anisotropy (e.g. Combes et al., 2003)

Deformation: Shape changes of the entire wing

Deformation: Shape changes of the entire wing

Musca: Deformation of entire wing

7 µN from dorsal

29 μN from ventral

40 µN from ventral

Musca: Deformation of entire wing

Wing does not only deform along beam.

Summary

- For physiological forces similar to cantilevered beam
- BUT: More complex behaviour of the rest of wing
- Now more data available
 - Wings in nearly natural state
 - Shape changes for entire wing available
- Prerequesite for (computational) wing models which include fluidstructure interactions → profile / force data for Hung's model

Acknowledgements

Lars Heepe (Kiel)

Stanislav N. Gorb (Kiel)

Thomas Frank, Andrea Cyriax (Erfurt)