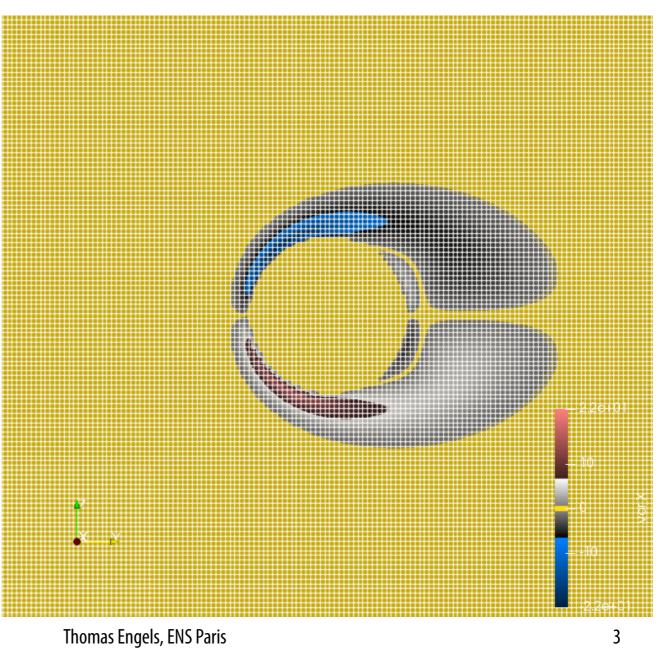
Progress on adaptive insect simulations

Thomas Engels

École Normale Supérieure Paris, Laboratoire de Météorologie Dynamique

Internal presentation at the 5th International AIFIT workshop

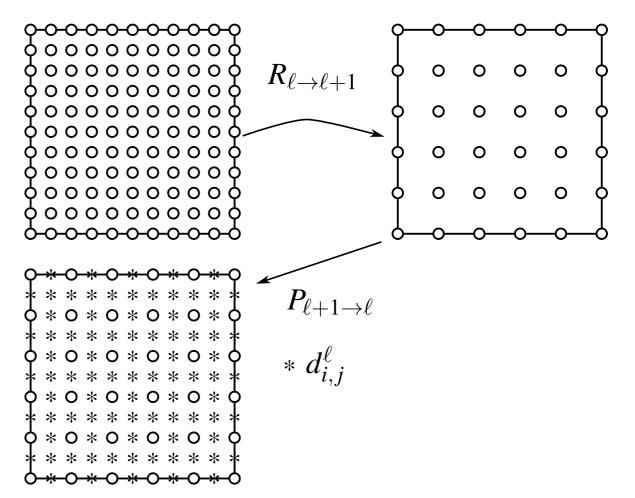

Looking back on Fourier

- Until now, we used the FluSl code, which is based on Fourier transforms
- Very accurate, fast, massively parallel allows fast inversion of Laplace operator → perfectly incompressible
- No boundary conditions: Volume penalization method

$$\widehat{u}_{k} = \frac{1}{N} \sum_{n=0}^{N-1} u_{n} \cdot e^{-i2\pi kn/N}$$
$$u = \sum_{k=0}^{N-1} \widehat{u}_{k} \cdot e^{i2\pi kn/N}$$
$$\widehat{(\partial_{x}u)} = ik\widehat{u}_{k}$$

Looking back on Fourier

- Equidistant grids: resolution is the same everywhere
- Limits domain size or resolution



The basic idea for adaptivity

- Refine where necessary, coarsen where possible
- Two groups of methods appear: error *indicated* and error *controlled*
- Error indicators: (adaptive mesh refinement)
 - Vorticity, strain rates, flame positions etc
- Error controlled:
 - Multiresolution methods, many ideas from A. Harten in 1990s
 - Equivalent to bi-orthogonal wavelets
- Bye bye Fourier

Computation of details

- Detail coefficients are obtained by coarsening, then refining
- Their magnitude is related to the local regularity of the solution
- Small details in smooth regions → adaptive coarsening
- Large details → resolution is required.

The multiresolution algorithm

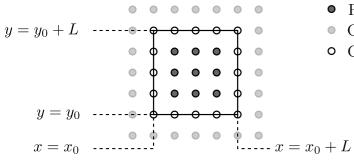
- To advance the solution from tⁿ to tⁿ⁺¹
 - Refinement stage. The entire grid is refined, to be sure that it is sufficient to contain the solution at the *new* time level
 - Evolution. Solve the PDE using finite differences and advance in time
 - Coarsening. Check the details and keep only those points where the details are significant.
 - Load balancing. The number of points has changed, and on some CPU we might now have more points. This must be corrected.

The error balancing

• Idea is to balance error from the compression and discretization

$$|u_{N}^{\varepsilon} - u^{ex}| \leq \underbrace{|u_{N} - u_{N}^{\varepsilon}|}_{\text{Perturbation error }\mathcal{O}(\varepsilon)N_{t}} + \underbrace{|u_{N} - u^{ex}|}_{\text{discretization error}}$$

Main ideas of new code

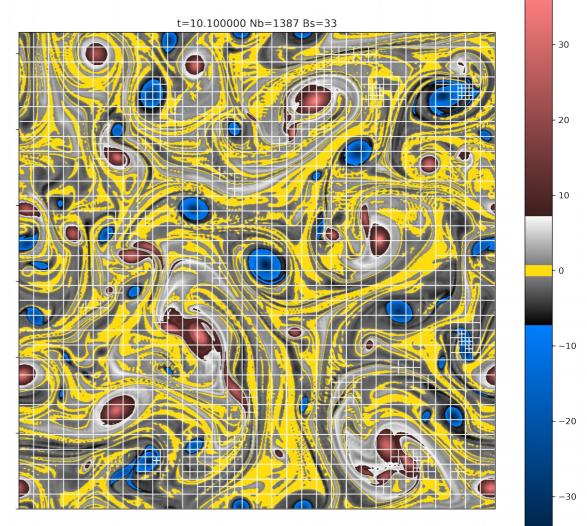

• Sacrifice strict incompressibility for efficiency (and hopefully overall error reduction)

$$\partial_{t}\underline{u} = -(\underline{u}\cdot\nabla)\underline{u} - \nabla p + \nu\nabla^{2}\underline{u} - \frac{\chi}{C_{\eta}}(\underline{u}-\underline{u}_{s}) - \frac{\chi_{sp}}{C_{sp}}(\underline{u}-\underline{u}_{\infty})$$
(1)
$$\partial_{t}p = -c_{0}^{2}\nabla\cdot\underline{u} - \gamma p - \frac{\chi_{sp}}{C_{sp}}(p-p_{\infty}).$$
(2)

- Sacrifice a part of compression in favor of faster data structures → block structured data (hybrid datastructure)
- Open source, multi-physics
- Wabbit: (W)avelet (A)daptive (B)lock-(B)ased solver for (I)nsects in (T)urbulence

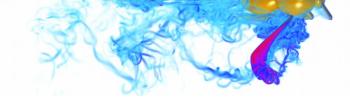
Block-structured grid approach

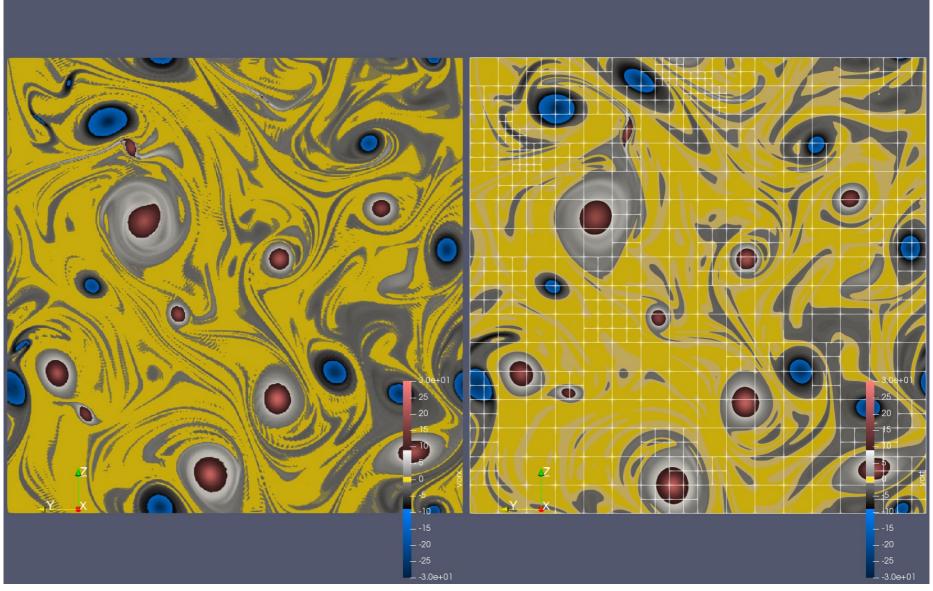
- Example grid with two levels and 7 blocks
- Each block has a layer of ghost nodes connecting them to neighboring blocks



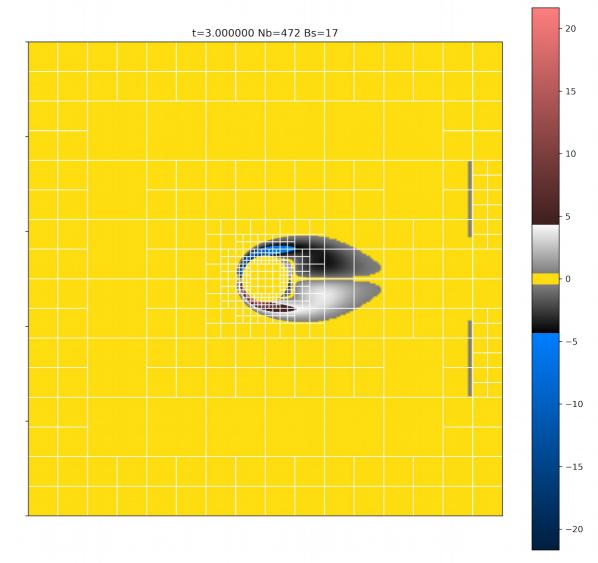

- Physical nodes Ghost nodes
- Conditional ghost nodes

ዋ	-0-	-0-	•	•	-0 -	•	•	- •	\mathbf{O}	\mathbf{O}	$\mathbf{\overline{)}}$	<u>.</u>	$\mathbf{\Theta}$	$\mathbf{\overline{)}}$	$\mathbf{\overline{)}}$	Ð
•	0	0	0	0	0	0	0	φ¢	000	000	000		000	000	000	
•	0	0	0	0	0	0	0	φ	000	00	000		$\mathbf{o}\mathbf{c}$	00	000	
•	0	0	0	0	0	0	0	φ	00	0	00		$\mathbf{o}\mathbf{c}$	00	00	Þφ
•	0	0	0	0	0	0	0	φē	000	00	00		00	00	000	ЪФ
•	0	0	0	0	0	0	0	φ¢	000	00	000		$\mathbf{o}\mathbf{c}$	00	000	>⊅
•	0	0	0	0	0	0	0	φc	$\mathbf{o}\mathbf{c}$	00	000		00	00	000	D\$⊅
•	0	0	0	0	0	0	0	φ	\mathbf{O}	00	\mathbf{O}		0	000	\mathbf{O})¢⊂
	~	~	_	_	~	~	~									
φ-	-0-	-0-	-0-	-0-	-0-	0	-0-	-φ-	$\mathbf{\Theta}$)0($\mathbf{\Theta}$) (($\mathbf{\Theta}$	$\mathbf{\Theta}$	\mathbf{O}	ЭФ
ф ф	0	0	0	0	0	0	0	- @ (0	0 0	0 0	0 0	کەر 0	0 0	0 0	0 0	ס נ
odes ⁰	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0) 0 0
Ι				Č				•	0	0	0	0	0	0	0	↔ 0 0 0
Ι	0	0	0	0	0	0	0	o	0	0 0	0 0	0	0	0 0	0 0))) 0 0 0
odes ⁰	0	0	0	0	0 0	0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0
odes O O	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	
odes O O	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	


Example I: decaying 2D turbulence

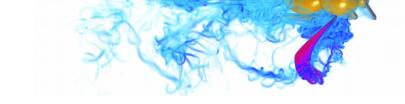

- In flusi: initialized random 2D vorticity field, let evolve Navier-Stokes until regularization has occurred, then use this field as initial condition for WABBIT.
- We compare evolution between flusi and WABBIT
- Note chaotic nature of problem, but just a first test.
- C0=50.0 eps=1e-3

Terminal fields

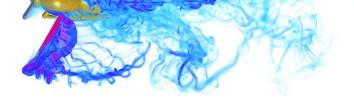


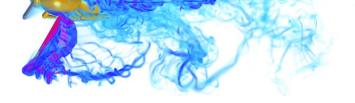
Marseille, 05/2018

Thomas Engels, ENS Paris

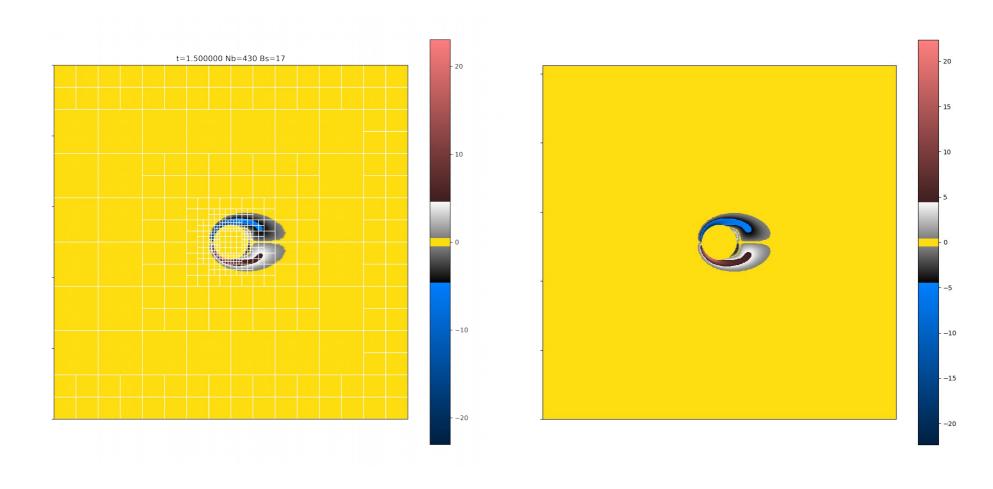

Example II: flow past cylinder

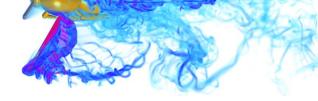
- Impulsivey started flow around a cylinder at Re=100 c0=40 eps=1e-3 C_eta=1e-3
- Volume penalization interface on maximum level
- Non-reflecting outflow in penalization set

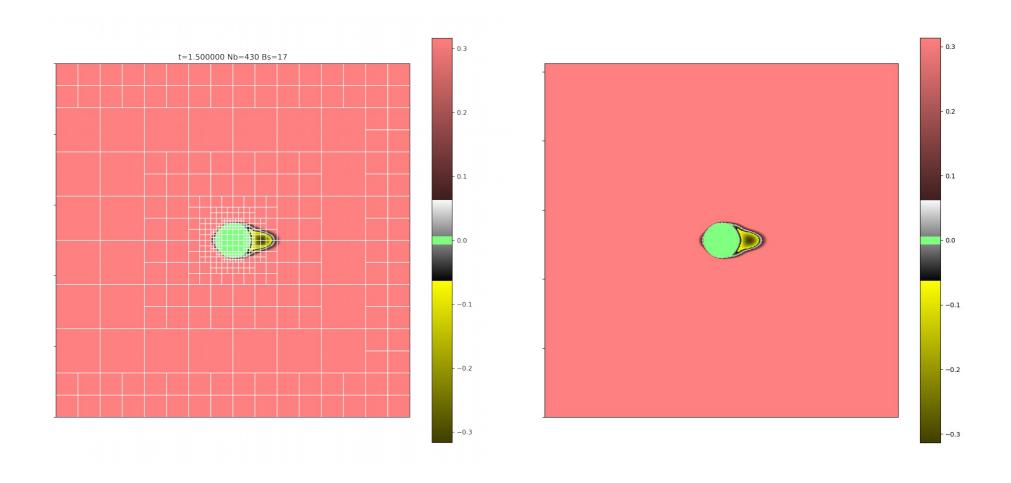


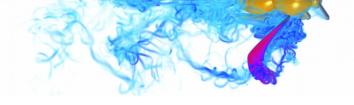


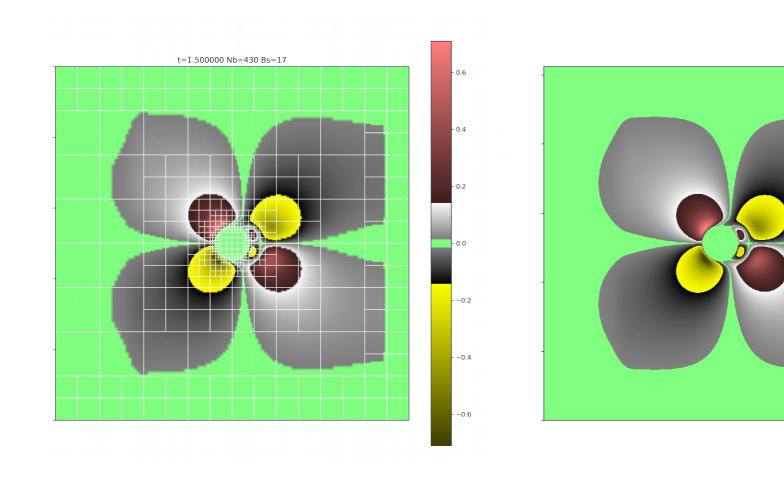
- Flusi Fx=8.265600e-01 Wabbit Fx=8.184966e-01
- Flusi: 1024^2

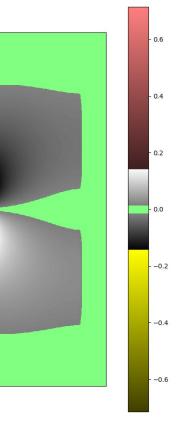

Pressure at t=1.5

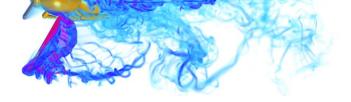



vorticity




Horizontal velocity





Vertical velocity

