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New adaptive solver
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Suzuki test case
Rectangular wing, finite thickness, Re = U_tip * B / nu = 100 (very viscous)
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Flusi solution
Some key numbers for the Fourier solution of the problem: these are the numbers 
we’re used to. The Flusi solution: 

● Equidistant grid

● Domain size: 3 x 3 x 3R, rather small

● Perfectly incompressible fluid

We performed two simulations:

● 512 x 512 x 512, C_eta=1.25e-4, Nt=34 881, 
cost: 5709 CPUh on 1024 cores, memory 25 GB
walltime: 5.5h

● 1024 x 1024 x 1024, C_eta=3.125e-5, Nt=59 240, 
cost: 147k CPUh on 4096 cores, memory 200 GB
walltime: 36.4h + 16h waiting

Fourier solutions have remarkable CPU efficiency (FLOP/Mbyte) and can be highly 
parallelized
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Flusi solution
Comparison of forces for 512 (- -) and 1024 (–) with Suzuki et al. 2015 and Sahin et al. 
2018
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Wabbit solution
● We use the method of artificial compressibility (ACM) with a finite pseudo-speed of 

sound c0

● The traditional volume penalization method  (red) is combined with a non-reflecting 
sponge term (blue) that removes the periodicity.

● Our computational approach is to use blocks of the same size (Bs^D)

● Parameters:
– Speed of sound c_0
– Porosity (penalization) c_eta
– Maximum refinement level J
– Multiresolution threshold epsilon

● Impulsively started motion, p=0 at the beginning 

● RK4 replaced by 3rd order RK4 (Ralstons scheme)  cost neutral→
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Influence of eps

Eps=5e-6 Eps=1e-4

Eps controls how many fine details are retained in the representation
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Visualization of J
Visualization of the influence of J for a 2D cylinder flow. 

J=3
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Visualization of J
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Visualization of J
Visualization of the influence of J for a cylinder flow. 

J=9
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Wabbit solution (best)
● Jmax=8, c0=50 (but that does not matter) Ceta=2.78e-5

● Cost: ~10 747 CPUh on 96 cores
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Wabbit convergence for suzuki
● Eps does not play a role (fixed to 

eps0=1e-3 here)  no turbulence→

● The reference is the flusi 1024 
solution because I trust it the most

● Error is computed:

The interval is subject to changes 
as some simulations are still 
running.

● J=6: minimum, then error increases again (loss of regularity). For J=8 we have different 
values of c0. 

● J=9 is not ready yet.
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Wabbit parameter study

● Eps does not play a role (fixed to eps0=1e-3 here)  no turbulence→
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notes

● Divergence inside the solid??

● divergence of penalization term

● Mach-number coupling unstable

● Show nblocks as a function of J: scaling very different from equidistant codes
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Fruit fly (Maeda-test)
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Key numbers flusi simulation

● Nu = 0.0113 (for suzuki it was 
nu=0.0366)

● L = 3.2

● Nx = 640

● C_eta = 1.15e-4

● Cost: ~15k CPUh

● Floor boundary condition (which was 
unfortunately missing in wabbit 
simulations right now)
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Comparison: isovor 25
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CPU time comparison

● Flusi: 15 100 CPUh on 1024 cores

● Wabbit: 1 968 CPUh on 96 cores

Next steps:

● Compute bumblebee with wabbit (turbulence: now eps plays a role), conclude 
validation (~2 weeks)

● For a SISC paper, a fancy test would be to simulate the fractal tree together with a 
bumblebee 
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